Cargando…

Targeting signals and subunit interactions in coated vesicle adaptor complexes

There are two clathrin-coated vesicle adaptor complexes in the cell, one associated with the plasma membrane and one associated with the TGN. The subunit composition of the plasma membrane adaptor complex is alpha-adaptin, beta-adaptin, AP50, and AP17; while that of the TGN adaptor complex is gamma-...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120623/
https://www.ncbi.nlm.nih.gov/pubmed/7593184
Descripción
Sumario:There are two clathrin-coated vesicle adaptor complexes in the cell, one associated with the plasma membrane and one associated with the TGN. The subunit composition of the plasma membrane adaptor complex is alpha-adaptin, beta-adaptin, AP50, and AP17; while that of the TGN adaptor complex is gamma-adaptin, beta'-adaptin, AP47, and AP19. To search for adaptor targeting signals, we have constructed chimeras between alpha-adaptin and gamma-adaptin within their NH2-terminal domains. We have identified stretches of sequence in the two proteins between amino acids approximately 130 and 330-350 that are essential for targeting. Immunoprecipitation reveals that this region determines whether a construct coassemblies with AP50 and AP17, or with AP47 and AP19. These observations suggest that these other subunits may play an important role in targeting. In contrast, beta- and beta'-adaptins are clearly not involved in this event. Chimeras between the alpha- and gamma-adaptin COOH-terminal domains reveal the presence of a second targeting signal. We have further investigated the interactions between the adaptor subunits using the yeast two-hybrid system. Interactions can be detected between the beta/beta'-adaptins and the alpha/gamma- adaptins, between the beta/beta'-adaptins and the AP50/AP47 subunits, between alpha-adaptin and AP17, and between gamma-adaptin and AP19. These results indicate that the adaptor subunits act in concert to target the complex to the appropriate membrane.