Cargando…

The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases

Interaction of cells with extracellular matrix via integrin adhesion receptors plays an important role in a wide range of cellular: functions, for example cell growth, movement, and differentiation. Upon interaction with substrate, integrins cluster and associate with a variety of cytoplasmic protei...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120648/
https://www.ncbi.nlm.nih.gov/pubmed/8557752
_version_ 1782141544448393216
collection PubMed
description Interaction of cells with extracellular matrix via integrin adhesion receptors plays an important role in a wide range of cellular: functions, for example cell growth, movement, and differentiation. Upon interaction with substrate, integrins cluster and associate with a variety of cytoplasmic proteins to form focal complexes and with the actin cytoskeleton. Although the intracellular signals induced by integrins are at present undefined, it is thought that they are mediated by proteins recruited to the focal complexes. It has been suggested, for example, that after recruitment to focal adhesions p125FAK can activate the ERK1/2 MAP kinase cascade. We have previously reported that members of the rho family of small GTPases can trigger the assembly of focal complexes when activated in cells. Using microinjection techniques, we have now examined the role of the extracellular matrix and of the two GTP-binding proteins, rac and rho, in the assembly of integrin complexes in both mouse and human fibroblasts. We find that the interaction of integrins with extracellular matrix alone is not sufficient to induce integrin clustering and focal complex formation. Similarly, activation of rho or rac by extracellular growth factors does not lead to focal complex formation in the absence of matrix. Focal complexes are only assembled in the presence of both matrix and functionally active members of the rho family. In agreement with this, the interaction of integrins with matrix in the absence of rho/rac activity is unable to activate the ERK1/2 kinases in Swiss 3T3 cells. In fact, ERK1/2 can be activated fully by growth factors in the absence of matrix and it seems unlikely, therefore, that the adhesion dependence of fibroblast growth is mediated through the ras/MAP kinase pathway. We conclude that extracellular matrix is not sufficient to trigger focal complex assembly and subsequent integrin-dependent signal transduction in the absence of functionally active members of the rho family of GTPases.
format Text
id pubmed-2120648
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21206482008-05-01 The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases J Cell Biol Articles Interaction of cells with extracellular matrix via integrin adhesion receptors plays an important role in a wide range of cellular: functions, for example cell growth, movement, and differentiation. Upon interaction with substrate, integrins cluster and associate with a variety of cytoplasmic proteins to form focal complexes and with the actin cytoskeleton. Although the intracellular signals induced by integrins are at present undefined, it is thought that they are mediated by proteins recruited to the focal complexes. It has been suggested, for example, that after recruitment to focal adhesions p125FAK can activate the ERK1/2 MAP kinase cascade. We have previously reported that members of the rho family of small GTPases can trigger the assembly of focal complexes when activated in cells. Using microinjection techniques, we have now examined the role of the extracellular matrix and of the two GTP-binding proteins, rac and rho, in the assembly of integrin complexes in both mouse and human fibroblasts. We find that the interaction of integrins with extracellular matrix alone is not sufficient to induce integrin clustering and focal complex formation. Similarly, activation of rho or rac by extracellular growth factors does not lead to focal complex formation in the absence of matrix. Focal complexes are only assembled in the presence of both matrix and functionally active members of the rho family. In agreement with this, the interaction of integrins with matrix in the absence of rho/rac activity is unable to activate the ERK1/2 kinases in Swiss 3T3 cells. In fact, ERK1/2 can be activated fully by growth factors in the absence of matrix and it seems unlikely, therefore, that the adhesion dependence of fibroblast growth is mediated through the ras/MAP kinase pathway. We conclude that extracellular matrix is not sufficient to trigger focal complex assembly and subsequent integrin-dependent signal transduction in the absence of functionally active members of the rho family of GTPases. The Rockefeller University Press 1995-12-02 /pmc/articles/PMC2120648/ /pubmed/8557752 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases
title The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases
title_full The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases
title_fullStr The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases
title_full_unstemmed The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases
title_short The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases
title_sort assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac gtpases
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120648/
https://www.ncbi.nlm.nih.gov/pubmed/8557752