Cargando…

Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps

Caveolin is a protein associated with the characteristic coats that decorate the cytoplasmic face of plasma membrane caveolae. Recently it was found that exposure of human fibroblasts to cholesterol oxidase (CO) rapidly induces caveolin to redistribute to the ER and then to the Golgi complex, and th...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120680/
https://www.ncbi.nlm.nih.gov/pubmed/8522601
_version_ 1782141551972974592
collection PubMed
description Caveolin is a protein associated with the characteristic coats that decorate the cytoplasmic face of plasma membrane caveolae. Recently it was found that exposure of human fibroblasts to cholesterol oxidase (CO) rapidly induces caveolin to redistribute to the ER and then to the Golgi complex, and that subsequent removal of CO allows caveolin to return to the plasma membrane (Smart, E. J., Y.-S. Ying, P. A. Conrad, R. G. W. Anderson, J. Cell Biol. 1994, 127:1185-1197). We now present evidence that caveolin normally undergoes microtubule-dependent cycling between the plasma membrane and the Golgi. In cells that were treated briefly with nocodazole and then with a mixture of nocodazole plus CO, caveolin relocated from the plasma membrane to the ER and then to the ER/Golgi intermediate compartment (ERGIC), but subsequent movement to the Golgi was not observed. Even in the absence of CO, nocodazole caused caveolin to accumulate in the ERGIC. Nocodazole did not retard the movement of caveolin from the Golgi to the plasma membrane after removal of CO. Incubation of cells at 15 degrees followed by elevation of the temperature to 37 degrees caused caveolin to accumulate first in the ERGIC and then in the Golgi, before finally reestablishing its normal steady state distribution predominantly in plasma membrane caveolae. In cells released from a 15 degrees block, movement of caveolin from the Golgi to the plasma membrane was not inhibited by nocodazole. Taken together, these results imply that caveolin cycles constitutively between the plasma membrane and the Golgi by a multi- step process, one of which, ERGIC-to-Golgi transport, requires microtubules. This novel, bidirectional pathway may indicate roles for microtubules in the maintenance of caveolae, and for caveolin in shuttling fatty acids and cholesterol between the plasma membrane and the ER/Golgi system.
format Text
id pubmed-2120680
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21206802008-05-01 Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps J Cell Biol Articles Caveolin is a protein associated with the characteristic coats that decorate the cytoplasmic face of plasma membrane caveolae. Recently it was found that exposure of human fibroblasts to cholesterol oxidase (CO) rapidly induces caveolin to redistribute to the ER and then to the Golgi complex, and that subsequent removal of CO allows caveolin to return to the plasma membrane (Smart, E. J., Y.-S. Ying, P. A. Conrad, R. G. W. Anderson, J. Cell Biol. 1994, 127:1185-1197). We now present evidence that caveolin normally undergoes microtubule-dependent cycling between the plasma membrane and the Golgi. In cells that were treated briefly with nocodazole and then with a mixture of nocodazole plus CO, caveolin relocated from the plasma membrane to the ER and then to the ER/Golgi intermediate compartment (ERGIC), but subsequent movement to the Golgi was not observed. Even in the absence of CO, nocodazole caused caveolin to accumulate in the ERGIC. Nocodazole did not retard the movement of caveolin from the Golgi to the plasma membrane after removal of CO. Incubation of cells at 15 degrees followed by elevation of the temperature to 37 degrees caused caveolin to accumulate first in the ERGIC and then in the Golgi, before finally reestablishing its normal steady state distribution predominantly in plasma membrane caveolae. In cells released from a 15 degrees block, movement of caveolin from the Golgi to the plasma membrane was not inhibited by nocodazole. Taken together, these results imply that caveolin cycles constitutively between the plasma membrane and the Golgi by a multi- step process, one of which, ERGIC-to-Golgi transport, requires microtubules. This novel, bidirectional pathway may indicate roles for microtubules in the maintenance of caveolae, and for caveolin in shuttling fatty acids and cholesterol between the plasma membrane and the ER/Golgi system. The Rockefeller University Press 1995-12-02 /pmc/articles/PMC2120680/ /pubmed/8522601 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps
title Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps
title_full Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps
title_fullStr Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps
title_full_unstemmed Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps
title_short Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps
title_sort caveolin cycles between plasma membrane caveolae and the golgi complex by microtubule-dependent and microtubule-independent steps
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120680/
https://www.ncbi.nlm.nih.gov/pubmed/8522601