Cargando…

Lysophosphatidic acid and bFGF control different modes in proliferating myoblasts

Myogenic cells provide excellent in vitro models for studying the cell growth and differentiation. In this study we report that lysophosphatidic acid (LPA), a bioactive phospholipid contained in serum, stimulates the growth and inhibits the differentiation of mouse C2C12 myoblast cells, in a distinc...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120704/
https://www.ncbi.nlm.nih.gov/pubmed/8567722
_version_ 1782141557870166016
collection PubMed
description Myogenic cells provide excellent in vitro models for studying the cell growth and differentiation. In this study we report that lysophosphatidic acid (LPA), a bioactive phospholipid contained in serum, stimulates the growth and inhibits the differentiation of mouse C2C12 myoblast cells, in a distinct manner from basic fibroblast growth factor (bFGF) whose mitotic and anti-differentiation actions have been well investigated. These actions of LPA were both blocked by pertussis toxin, suggesting the involvement of Gi class of G proteins, whereas bFGF acts through receptor tyrosine kinases. Detailed analysis revealed that LPA and bFGF act differently in regulating the myogenic basic helix-loop-helix (bHLH) proteins, the key players in myogenic differentiation process. LPA stimulates the proliferation of undifferentiated myoblasts allowing the continued expression of MyoD, but in contrast, bFGF does so with the MyoD expression suppressed at the mRNA level. Both compounds maintain the myf-5 expression, and suppress the myogenin expression. In addition, while LPA did not inhibit cell-cell contact-induced differentiation, bFGF strongly inhibited this process. Furthermore, LPA and bFGF act cooperatively in their mitogenic and anti-differentiation abilities. These findings indicate that LPA and bFGF differently stimulate intracellular signaling pathways, resulting in proliferating myoblasts each bearing a distinct expression pattern of myogenic bHLH proteins and distinct differentiation potentials in response to cell-cell contact, and illustrate the biological significance of Gi-mediated and tyrosine kinase-mediated signals.
format Text
id pubmed-2120704
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21207042008-05-01 Lysophosphatidic acid and bFGF control different modes in proliferating myoblasts J Cell Biol Articles Myogenic cells provide excellent in vitro models for studying the cell growth and differentiation. In this study we report that lysophosphatidic acid (LPA), a bioactive phospholipid contained in serum, stimulates the growth and inhibits the differentiation of mouse C2C12 myoblast cells, in a distinct manner from basic fibroblast growth factor (bFGF) whose mitotic and anti-differentiation actions have been well investigated. These actions of LPA were both blocked by pertussis toxin, suggesting the involvement of Gi class of G proteins, whereas bFGF acts through receptor tyrosine kinases. Detailed analysis revealed that LPA and bFGF act differently in regulating the myogenic basic helix-loop-helix (bHLH) proteins, the key players in myogenic differentiation process. LPA stimulates the proliferation of undifferentiated myoblasts allowing the continued expression of MyoD, but in contrast, bFGF does so with the MyoD expression suppressed at the mRNA level. Both compounds maintain the myf-5 expression, and suppress the myogenin expression. In addition, while LPA did not inhibit cell-cell contact-induced differentiation, bFGF strongly inhibited this process. Furthermore, LPA and bFGF act cooperatively in their mitogenic and anti-differentiation abilities. These findings indicate that LPA and bFGF differently stimulate intracellular signaling pathways, resulting in proliferating myoblasts each bearing a distinct expression pattern of myogenic bHLH proteins and distinct differentiation potentials in response to cell-cell contact, and illustrate the biological significance of Gi-mediated and tyrosine kinase-mediated signals. The Rockefeller University Press 1996-01-01 /pmc/articles/PMC2120704/ /pubmed/8567722 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Lysophosphatidic acid and bFGF control different modes in proliferating myoblasts
title Lysophosphatidic acid and bFGF control different modes in proliferating myoblasts
title_full Lysophosphatidic acid and bFGF control different modes in proliferating myoblasts
title_fullStr Lysophosphatidic acid and bFGF control different modes in proliferating myoblasts
title_full_unstemmed Lysophosphatidic acid and bFGF control different modes in proliferating myoblasts
title_short Lysophosphatidic acid and bFGF control different modes in proliferating myoblasts
title_sort lysophosphatidic acid and bfgf control different modes in proliferating myoblasts
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120704/
https://www.ncbi.nlm.nih.gov/pubmed/8567722