Cargando…

Bcl-2 inhibits retinoic acid-induced apoptosis during the neural differentiation of embryonal stem cells

We report here that all trans-retinoic acid (RA), a classical morphogen, induces apoptosis during the neural differentiation of the embryonic stem cell line P19. The apoptotic cells showed, in addition to DNA cleavage, typical morphological changes including chromatin condensation, nuclear fragmenta...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120745/
https://www.ncbi.nlm.nih.gov/pubmed/8603926
Descripción
Sumario:We report here that all trans-retinoic acid (RA), a classical morphogen, induces apoptosis during the neural differentiation of the embryonic stem cell line P19. The apoptotic cells showed, in addition to DNA cleavage, typical morphological changes including chromatin condensation, nuclear fragmentation, and cytoplasmic vacuolation. These apoptotic changes became obvious by 12 h after the addition of RA. The endogenous expression of bcl-2 in surviving cells was down-regulated during this process, and the compelled expression of bcl-2 by retroviral vectors reduced the number of apoptotic cells. Apoptosis was partially inhibited by adding antisense oligonucleotides against RA receptors (RARs) simultaneously or by transfecting a plasmid vector flanked with a RA-responsive element. Antisense oligonucleotides against retinoid X receptors (RXRs), the receptors for 9 cis-RA, did not inhibit apoptosis induced by all trans-RA. Cycloheximide and actinomycin D, inhibitors of protein and RNA syntheses, respectively, suppressed apoptosis. No changes were seen in the expression of tumor necrosis factors, their receptors, Fas, FasL, p53, or c-myc, molecules which have been suggested to participate in the apoptotic process. Addition of neurotrophins to the culture medium did not affect apoptosis. These findings suggest that the signals themselves, promote expression of molecules essential for apoptosis. Furthermore, we observed that RA induced apoptosis of cerebral neurons from murine embryos in primary culture, which suggests that RA might participate in cell death which occurs during neural development.