Cargando…

Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I

Aminopeptidase I (API) is a soluble leucine aminopeptidase resident in the yeast vacuole (Frey, J., and K.H. Rohm. 1978. Biochim. Biophys. Acta. 527:31-41). The precursor form of API contains an amino-terminal 45-amino acid propeptide, which is removed by proteinase B (PrB) upon entry into the vacuo...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120762/
https://www.ncbi.nlm.nih.gov/pubmed/8601598
_version_ 1782141571554082816
collection PubMed
description Aminopeptidase I (API) is a soluble leucine aminopeptidase resident in the yeast vacuole (Frey, J., and K.H. Rohm. 1978. Biochim. Biophys. Acta. 527:31-41). The precursor form of API contains an amino-terminal 45-amino acid propeptide, which is removed by proteinase B (PrB) upon entry into the vacuole. The propeptide of API lacks a consensus signal sequence and it has been demonstrated that vacuolar localization of API is independent of the secretory pathway (Klionsky, D.J., R. Cueva, and D.S. Yaver. 1992. J. Cell Biol. 119:287-299). The predicted secondary structure for the API propeptide is composed of an amphipathic alpha- helix followed by a beta-turn and another alpha-helix, forming a helix- turn-helix structure. With the use of mutational analysis, we determined that the API propeptide is essential for proper transport into the vacuole. Deletion of the entire propeptide from the API molecule resulted in accumulation of a mature-sized protein in the cytosol. A more detailed examination using random mutagenesis and a series of smaller deletions throughout the propeptide revealed that API localization is severely affected by alterations within the predicted first alpha-helix. In vitro studies indicate that mutations in this predicted helix prevent productive binding interactions from taking place. In contrast, vacuolar import is relatively insensitive to alterations in the second predicted helix of the propeptide. Examination of API folding revealed that mutations that affect entry into the vacuole did not affect the structure of API. These data indicate that the API propeptide serves as a vacuolar targeting determinant at a critical step along the cytoplasm to vacuole targeting pathway.
format Text
id pubmed-2120762
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21207622008-05-01 Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I J Cell Biol Articles Aminopeptidase I (API) is a soluble leucine aminopeptidase resident in the yeast vacuole (Frey, J., and K.H. Rohm. 1978. Biochim. Biophys. Acta. 527:31-41). The precursor form of API contains an amino-terminal 45-amino acid propeptide, which is removed by proteinase B (PrB) upon entry into the vacuole. The propeptide of API lacks a consensus signal sequence and it has been demonstrated that vacuolar localization of API is independent of the secretory pathway (Klionsky, D.J., R. Cueva, and D.S. Yaver. 1992. J. Cell Biol. 119:287-299). The predicted secondary structure for the API propeptide is composed of an amphipathic alpha- helix followed by a beta-turn and another alpha-helix, forming a helix- turn-helix structure. With the use of mutational analysis, we determined that the API propeptide is essential for proper transport into the vacuole. Deletion of the entire propeptide from the API molecule resulted in accumulation of a mature-sized protein in the cytosol. A more detailed examination using random mutagenesis and a series of smaller deletions throughout the propeptide revealed that API localization is severely affected by alterations within the predicted first alpha-helix. In vitro studies indicate that mutations in this predicted helix prevent productive binding interactions from taking place. In contrast, vacuolar import is relatively insensitive to alterations in the second predicted helix of the propeptide. Examination of API folding revealed that mutations that affect entry into the vacuole did not affect the structure of API. These data indicate that the API propeptide serves as a vacuolar targeting determinant at a critical step along the cytoplasm to vacuole targeting pathway. The Rockefeller University Press 1996-03-02 /pmc/articles/PMC2120762/ /pubmed/8601598 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I
title Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I
title_full Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I
title_fullStr Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I
title_full_unstemmed Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I
title_short Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I
title_sort identification of a cytoplasm to vacuole targeting determinant in aminopeptidase i
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120762/
https://www.ncbi.nlm.nih.gov/pubmed/8601598