Cargando…

Heterophilic interactions of DM-GRASP: GRASP-NgCAM interactions involved in neurite extension

DM-GRASP is an immunoglobulin superfamily cell adhesion molecule that is expressed in both the developing nervous and immune system. Specific populations of neurons respond to DM-GRASP substrates appears to require homophilic interactions between DM-GRASP molecules. We were interested in determining...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120810/
https://www.ncbi.nlm.nih.gov/pubmed/8636239
Descripción
Sumario:DM-GRASP is an immunoglobulin superfamily cell adhesion molecule that is expressed in both the developing nervous and immune system. Specific populations of neurons respond to DM-GRASP substrates appears to require homophilic interactions between DM-GRASP molecules. We were interested in determining whether DM-GRASP interacts heterophilically with other ligands as well. We have found that eleven proteins from embryonic chick brain membranes consistently bind to and elute from a DM-GRASP-Sepharose affinity column. One of these proteins is DM-GRASP itself, consistent with its known homophilic binding. Another protein, at 130 kD, is immunoreactive with monoclonal antibodies to NgCAM. Other neural cell adhesion molecules were not detected in the eluate. The DM- GRASP-Sepharose eluate also contains a potent neurite stimulating activity, which cannot be accounted for by either DM-GRASP or NgCAM. To investigate the interaction of DM-GRASP and NgCAM, antibodies against DM-GRASP were added to neuronal cultures extending neurites on an NgCAM substrate. The presence of antibodies to DM-GRASP decreased neurite extension on laminin, suggesting that the antibody is not toxic or generally inhibiting motility. We present two possible models for the DM-GRASP-NgCAM association and a hypothesis for neural cell adhesion function that features the dimerization of cell adhesion molecules.