Cargando…

An endoplasmic reticulum storage disease causing congenital goiter with hypothyroidism

In humans, deficient thyroglobulin (Tg, the thyroid prohormone) is an important cause of congenital hypothyroid goiter; further, homozygous mice expressing two cog/cog alleles (linked to the Tg locus) exhibit the same phenotype. Tg mutations might affect multiple different steps in thyroid hormone s...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120816/
https://www.ncbi.nlm.nih.gov/pubmed/8636228
_version_ 1782141584239755264
collection PubMed
description In humans, deficient thyroglobulin (Tg, the thyroid prohormone) is an important cause of congenital hypothyroid goiter; further, homozygous mice expressing two cog/cog alleles (linked to the Tg locus) exhibit the same phenotype. Tg mutations might affect multiple different steps in thyroid hormone synthesis; however, the microscopic and biochemical phenotype tends to involve enlargement of the thyroid ER and accumulation of protein bands of M(r) < 100. To explore further the cell biology of this autosomal recessive illness, we have examined the folding and intracellular transport of newly synthesized Tg in cog/cog thyroid tissue. We find that mutant mice synthesize a full-length Tg, which appears to undergo normal N-linked glycosylation and glucose trimming. Nevertheless, in the mutant, Tg is deficient in the folding that leads to homodimerization, and there is a deficiency in the quantity of intracellular Tg transported to the distal portion of the secretory pathway. Indeed, we find that the underlying disorder in cog/cog mice is a thyroid ER storage disease, in which a temperature- sensitive Tg folding defect, in conjunction with normal ER quality control mechanisms, leads to defective Tg export. In relation to quality control, we find that the physiological response in this illness includes the specific induction of five molecular chaperones in the thyroid ER. Based on the pattern of chaperone binding, different potential roles for individual chaperones are suggested in glycoprotein folding, retention, and degradation in this ER storage disease.
format Text
id pubmed-2120816
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21208162008-05-01 An endoplasmic reticulum storage disease causing congenital goiter with hypothyroidism J Cell Biol Articles In humans, deficient thyroglobulin (Tg, the thyroid prohormone) is an important cause of congenital hypothyroid goiter; further, homozygous mice expressing two cog/cog alleles (linked to the Tg locus) exhibit the same phenotype. Tg mutations might affect multiple different steps in thyroid hormone synthesis; however, the microscopic and biochemical phenotype tends to involve enlargement of the thyroid ER and accumulation of protein bands of M(r) < 100. To explore further the cell biology of this autosomal recessive illness, we have examined the folding and intracellular transport of newly synthesized Tg in cog/cog thyroid tissue. We find that mutant mice synthesize a full-length Tg, which appears to undergo normal N-linked glycosylation and glucose trimming. Nevertheless, in the mutant, Tg is deficient in the folding that leads to homodimerization, and there is a deficiency in the quantity of intracellular Tg transported to the distal portion of the secretory pathway. Indeed, we find that the underlying disorder in cog/cog mice is a thyroid ER storage disease, in which a temperature- sensitive Tg folding defect, in conjunction with normal ER quality control mechanisms, leads to defective Tg export. In relation to quality control, we find that the physiological response in this illness includes the specific induction of five molecular chaperones in the thyroid ER. Based on the pattern of chaperone binding, different potential roles for individual chaperones are suggested in glycoprotein folding, retention, and degradation in this ER storage disease. The Rockefeller University Press 1996-05-01 /pmc/articles/PMC2120816/ /pubmed/8636228 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
An endoplasmic reticulum storage disease causing congenital goiter with hypothyroidism
title An endoplasmic reticulum storage disease causing congenital goiter with hypothyroidism
title_full An endoplasmic reticulum storage disease causing congenital goiter with hypothyroidism
title_fullStr An endoplasmic reticulum storage disease causing congenital goiter with hypothyroidism
title_full_unstemmed An endoplasmic reticulum storage disease causing congenital goiter with hypothyroidism
title_short An endoplasmic reticulum storage disease causing congenital goiter with hypothyroidism
title_sort endoplasmic reticulum storage disease causing congenital goiter with hypothyroidism
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120816/
https://www.ncbi.nlm.nih.gov/pubmed/8636228