Cargando…

Evidence using a green fluorescent protein-glucocorticoid receptor chimera that the Ran/TC4 GTPase mediates an essential function independent of nuclear protein import

The Ran/TC4 GTPase is required for the nuclear accumulation of artificial karyophiles in permeabilized cell assays. To investigate Ran function in a physiologically intact setting using mammalian cells, we examined the effects of several Ran mutants on cell growth and on the nuclear translocation of...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120855/
https://www.ncbi.nlm.nih.gov/pubmed/8655589
_version_ 1782141593466175488
collection PubMed
description The Ran/TC4 GTPase is required for the nuclear accumulation of artificial karyophiles in permeabilized cell assays. To investigate Ran function in a physiologically intact setting using mammalian cells, we examined the effects of several Ran mutants on cell growth and on the nuclear translocation of a glucocorticoid receptor-green fluorescent protein fusion (GR-GFP). Glucocorticoid receptor is cytosolic in the absence of ligand, but translocates to the nucleus on binding the agonist dexamethasone. After transfection into baby hamster kidney cells (BHK21), GR-GFP was detectable in living cells by direct fluorescence microscopy. Addition of dexamethasone caused a rapid translocation of the chimeric protein from the cytosol into the nucleus (t1/2 approximately 5 min). Cotransfection with epitope-tagged, wild- type Ran led to expression of HA1-Ran that was approximately 1.6-fold higher than the level of the endogenous protein, but it had no deleterious effect on nuclear import of the GR-GFP. However, expression of the Ran mutants G19V, T24N, or a COOH-terminal deletion (delta C) mutant dramatically reduced the accumulation of GR-GFP in the nuclei. An L43E mutant of Ran was without significant effect on nuclear GR-GFP import. Identical results were obtained following micro-injection of recombinant Ran mutants into cells expressing GR-GFP. Significantly, all of the Ran mutants, including L43E, strongly inhibited cell growth. These results demonstrate the use of GR-GFP in real-time imaging of nuclear transport. They also show that multiple types of Ran mutant exert dominant effects on this process, and that normal Ran function requires cycling between the GTP- and GDP-bound states of the protein. Most importantly, the results with the L43E Ran mutant provide strong evidence that Ran mediates a function essential to cell viability that is independent of nuclear protein import.
format Text
id pubmed-2120855
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21208552008-05-01 Evidence using a green fluorescent protein-glucocorticoid receptor chimera that the Ran/TC4 GTPase mediates an essential function independent of nuclear protein import J Cell Biol Articles The Ran/TC4 GTPase is required for the nuclear accumulation of artificial karyophiles in permeabilized cell assays. To investigate Ran function in a physiologically intact setting using mammalian cells, we examined the effects of several Ran mutants on cell growth and on the nuclear translocation of a glucocorticoid receptor-green fluorescent protein fusion (GR-GFP). Glucocorticoid receptor is cytosolic in the absence of ligand, but translocates to the nucleus on binding the agonist dexamethasone. After transfection into baby hamster kidney cells (BHK21), GR-GFP was detectable in living cells by direct fluorescence microscopy. Addition of dexamethasone caused a rapid translocation of the chimeric protein from the cytosol into the nucleus (t1/2 approximately 5 min). Cotransfection with epitope-tagged, wild- type Ran led to expression of HA1-Ran that was approximately 1.6-fold higher than the level of the endogenous protein, but it had no deleterious effect on nuclear import of the GR-GFP. However, expression of the Ran mutants G19V, T24N, or a COOH-terminal deletion (delta C) mutant dramatically reduced the accumulation of GR-GFP in the nuclei. An L43E mutant of Ran was without significant effect on nuclear GR-GFP import. Identical results were obtained following micro-injection of recombinant Ran mutants into cells expressing GR-GFP. Significantly, all of the Ran mutants, including L43E, strongly inhibited cell growth. These results demonstrate the use of GR-GFP in real-time imaging of nuclear transport. They also show that multiple types of Ran mutant exert dominant effects on this process, and that normal Ran function requires cycling between the GTP- and GDP-bound states of the protein. Most importantly, the results with the L43E Ran mutant provide strong evidence that Ran mediates a function essential to cell viability that is independent of nuclear protein import. The Rockefeller University Press 1996-06-01 /pmc/articles/PMC2120855/ /pubmed/8655589 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Evidence using a green fluorescent protein-glucocorticoid receptor chimera that the Ran/TC4 GTPase mediates an essential function independent of nuclear protein import
title Evidence using a green fluorescent protein-glucocorticoid receptor chimera that the Ran/TC4 GTPase mediates an essential function independent of nuclear protein import
title_full Evidence using a green fluorescent protein-glucocorticoid receptor chimera that the Ran/TC4 GTPase mediates an essential function independent of nuclear protein import
title_fullStr Evidence using a green fluorescent protein-glucocorticoid receptor chimera that the Ran/TC4 GTPase mediates an essential function independent of nuclear protein import
title_full_unstemmed Evidence using a green fluorescent protein-glucocorticoid receptor chimera that the Ran/TC4 GTPase mediates an essential function independent of nuclear protein import
title_short Evidence using a green fluorescent protein-glucocorticoid receptor chimera that the Ran/TC4 GTPase mediates an essential function independent of nuclear protein import
title_sort evidence using a green fluorescent protein-glucocorticoid receptor chimera that the ran/tc4 gtpase mediates an essential function independent of nuclear protein import
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120855/
https://www.ncbi.nlm.nih.gov/pubmed/8655589