Cargando…

Altered rate of fibronectin matrix assembly by deletion of the first type III repeats

The assembly of fibronectin (FN) into a fibrillar matrix is a complex stepwise process that involves binding to integrin receptors as well as interactions between FN molecules. To follow the progression of matrix formation and determine the stages during which specific domains function, we have deve...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120877/
https://www.ncbi.nlm.nih.gov/pubmed/8707839
_version_ 1782141598597906432
collection PubMed
description The assembly of fibronectin (FN) into a fibrillar matrix is a complex stepwise process that involves binding to integrin receptors as well as interactions between FN molecules. To follow the progression of matrix formation and determine the stages during which specific domains function, we have developed cell lines that lack an endogenous FN matrix but will form fibrils when provided with exogenous FN. Recombinant FNs (recFN) containing deletions of either the RGD cell- binding sequence (RGD-) or the first type III repeats (FN delta III1-7) including the III1 FN binding site were generated with the baculovirus insect cell expression system. After addition to cells, recFN matrix assembly was monitored by indirect immunofluorescence and by insolubility in the detergent deoxycholate (DOC). In the absence of any native FN, FN delta III1-7 was assembled into fibrils and was converted into DOC-insoluble matrix. This process could be inhibited by the amino- terminal 70 kD fragment of FN, showing that FN delta III1-7 follows an assembly pathway similar to FN. The progression of FN delta III1-7 assembly differed from native FN in that the recFN became DOC-insoluble more quickly. In contrast, RGD- recFNs were not formed into fibrils except when added in combination with native FN. These results show that the RGD sequence is essential for the initiation step but fibrils can form independently of the III1-7 modules. The altered rate of FN delta III1-7 assembly suggests that one function of the missing repeats might be to modulate an early stage of matrix formation.
format Text
id pubmed-2120877
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21208772008-05-01 Altered rate of fibronectin matrix assembly by deletion of the first type III repeats J Cell Biol Articles The assembly of fibronectin (FN) into a fibrillar matrix is a complex stepwise process that involves binding to integrin receptors as well as interactions between FN molecules. To follow the progression of matrix formation and determine the stages during which specific domains function, we have developed cell lines that lack an endogenous FN matrix but will form fibrils when provided with exogenous FN. Recombinant FNs (recFN) containing deletions of either the RGD cell- binding sequence (RGD-) or the first type III repeats (FN delta III1-7) including the III1 FN binding site were generated with the baculovirus insect cell expression system. After addition to cells, recFN matrix assembly was monitored by indirect immunofluorescence and by insolubility in the detergent deoxycholate (DOC). In the absence of any native FN, FN delta III1-7 was assembled into fibrils and was converted into DOC-insoluble matrix. This process could be inhibited by the amino- terminal 70 kD fragment of FN, showing that FN delta III1-7 follows an assembly pathway similar to FN. The progression of FN delta III1-7 assembly differed from native FN in that the recFN became DOC-insoluble more quickly. In contrast, RGD- recFNs were not formed into fibrils except when added in combination with native FN. These results show that the RGD sequence is essential for the initiation step but fibrils can form independently of the III1-7 modules. The altered rate of FN delta III1-7 assembly suggests that one function of the missing repeats might be to modulate an early stage of matrix formation. The Rockefeller University Press 1996-07-02 /pmc/articles/PMC2120877/ /pubmed/8707839 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Altered rate of fibronectin matrix assembly by deletion of the first type III repeats
title Altered rate of fibronectin matrix assembly by deletion of the first type III repeats
title_full Altered rate of fibronectin matrix assembly by deletion of the first type III repeats
title_fullStr Altered rate of fibronectin matrix assembly by deletion of the first type III repeats
title_full_unstemmed Altered rate of fibronectin matrix assembly by deletion of the first type III repeats
title_short Altered rate of fibronectin matrix assembly by deletion of the first type III repeats
title_sort altered rate of fibronectin matrix assembly by deletion of the first type iii repeats
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120877/
https://www.ncbi.nlm.nih.gov/pubmed/8707839