Cargando…
Identification of stromal cell products that interact with pre-B cells
Our understanding of lympho-hematopoietic microenvironments is incomplete, and a new cloning strategy was developed to identify molecules that bind to B lineage lymphocyte precursors. A cell sorting procedure was used for initial enrichment of cDNAs from stromal cell mRNA that contained signal seque...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1996
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120935/ https://www.ncbi.nlm.nih.gov/pubmed/8707854 |
_version_ | 1782141611987173376 |
---|---|
collection | PubMed |
description | Our understanding of lympho-hematopoietic microenvironments is incomplete, and a new cloning strategy was developed to identify molecules that bind to B lineage lymphocyte precursors. A cell sorting procedure was used for initial enrichment of cDNAs from stromal cell mRNA that contained signal sequences and were therefore likely to encode transmembrane or secreted proteins. A second step involved expression of the library as soluble Ig fusion proteins. Finally, pools representing these proteins were screened for the ability to recognize pre-B cells. This approach resulted in the cloning of biglycan, syndecan 4, collagen type I, clusterin, matrix glycoprotein sc1, osteonectin, and one unknown molecule (designated SIM). The full-length cDNA of SIM revealed that it is a type I transmembrane protein, and its intracellular domain has weak homology with myosin heavy chain and related proteins. Staining of established cell lines and freshly isolated hematopoietic cells with the Ig fusion proteins revealed distinct patterns of reactivity and differential dependence on divalent cations. Biglycan-, sc1-, and SIM-Ig fusion proteins selectively increased interleukin 7-dependent proliferation of pre-B cells. Overexpression of the entire SIM protein affected the morphology of 293T cells, while expression of just the extracellular portion was without effect. Thus, a series of stromal cell surface molecules has been identified that interact with blood cell precursors. Three of them promoted the survival and/or proliferation of pre-B cells in culture, and all merit further study in relation to lympho-hematopoiesis. |
format | Text |
id | pubmed-2120935 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1996 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21209352008-05-01 Identification of stromal cell products that interact with pre-B cells J Cell Biol Articles Our understanding of lympho-hematopoietic microenvironments is incomplete, and a new cloning strategy was developed to identify molecules that bind to B lineage lymphocyte precursors. A cell sorting procedure was used for initial enrichment of cDNAs from stromal cell mRNA that contained signal sequences and were therefore likely to encode transmembrane or secreted proteins. A second step involved expression of the library as soluble Ig fusion proteins. Finally, pools representing these proteins were screened for the ability to recognize pre-B cells. This approach resulted in the cloning of biglycan, syndecan 4, collagen type I, clusterin, matrix glycoprotein sc1, osteonectin, and one unknown molecule (designated SIM). The full-length cDNA of SIM revealed that it is a type I transmembrane protein, and its intracellular domain has weak homology with myosin heavy chain and related proteins. Staining of established cell lines and freshly isolated hematopoietic cells with the Ig fusion proteins revealed distinct patterns of reactivity and differential dependence on divalent cations. Biglycan-, sc1-, and SIM-Ig fusion proteins selectively increased interleukin 7-dependent proliferation of pre-B cells. Overexpression of the entire SIM protein affected the morphology of 293T cells, while expression of just the extracellular portion was without effect. Thus, a series of stromal cell surface molecules has been identified that interact with blood cell precursors. Three of them promoted the survival and/or proliferation of pre-B cells in culture, and all merit further study in relation to lympho-hematopoiesis. The Rockefeller University Press 1996-08-01 /pmc/articles/PMC2120935/ /pubmed/8707854 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Identification of stromal cell products that interact with pre-B cells |
title | Identification of stromal cell products that interact with pre-B cells |
title_full | Identification of stromal cell products that interact with pre-B cells |
title_fullStr | Identification of stromal cell products that interact with pre-B cells |
title_full_unstemmed | Identification of stromal cell products that interact with pre-B cells |
title_short | Identification of stromal cell products that interact with pre-B cells |
title_sort | identification of stromal cell products that interact with pre-b cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120935/ https://www.ncbi.nlm.nih.gov/pubmed/8707854 |