Cargando…

Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells

During the assembly of gap junctions, a hemichannel in the plasma membrane of one cell is thought to align and dock with another in an apposed membrane to form a cell-to-cell channel. We report here on the existence and properties of nonjunctional, plasma membrane connexin43 (Cx43) hemichannels. The...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120949/
https://www.ncbi.nlm.nih.gov/pubmed/8769424
_version_ 1782141615248244736
collection PubMed
description During the assembly of gap junctions, a hemichannel in the plasma membrane of one cell is thought to align and dock with another in an apposed membrane to form a cell-to-cell channel. We report here on the existence and properties of nonjunctional, plasma membrane connexin43 (Cx43) hemichannels. The opening of the hemichannels was demonstrated by the cellular uptake of 5(6)-carboxyfluorescein from the culture medium when extracellular calcium levels were reduced. Dye uptake exhibited properties similar to those of gap junction channels. For example, using different dyes, the levels of uptake were correlated with molecular size: 5(6)-carboxyfluorescein (approximately 32%), 7- hydroxycoumarin-3-carboxylic acid (approximately 24%), fura-2 (approximately 11%), and fluorescein-dextran (approximately 0.4%). Octanol and heptanol also reduced dye uptake by approximately 50%. Detailed analysis of one clone of Novikoff cells transfected with a Cx43 antisense expression vector revealed a reduction in dye uptake levels according to uptake assays and a corresponding decrease in intercellular dye transfer rates in microinjection experiments. In addition, a more limited decrease in membrane resistance upon reduction of extracellular calcium was detected in electrophysiological studies of antisense transfectants, in contrast to control cells. Studies of dye uptake in HeLa cells also demonstrated a large increase following transfection with Cx43. Together these observations indicate that Cx43 is responsible for the hemichannel function in these cultured cells. Similar dye uptake results were obtained with normal rat kidney (NRK) cells, which express Cx43. Dye uptake can be dramatically inhibited by 12-O-tetradeconylphorbol-13-acetate-activated protein kinase C in these cell systems and by a temperature-sensitive tyrosine protein kinase, pp60v-src in LA25-NRK cells. We conclude that Cx43 hemichannels are found in the plasma membrane, where they are regulated by multiple signaling pathways, and likely represent an important stage in gap junction assembly.
format Text
id pubmed-2120949
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21209492008-05-01 Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells J Cell Biol Articles During the assembly of gap junctions, a hemichannel in the plasma membrane of one cell is thought to align and dock with another in an apposed membrane to form a cell-to-cell channel. We report here on the existence and properties of nonjunctional, plasma membrane connexin43 (Cx43) hemichannels. The opening of the hemichannels was demonstrated by the cellular uptake of 5(6)-carboxyfluorescein from the culture medium when extracellular calcium levels were reduced. Dye uptake exhibited properties similar to those of gap junction channels. For example, using different dyes, the levels of uptake were correlated with molecular size: 5(6)-carboxyfluorescein (approximately 32%), 7- hydroxycoumarin-3-carboxylic acid (approximately 24%), fura-2 (approximately 11%), and fluorescein-dextran (approximately 0.4%). Octanol and heptanol also reduced dye uptake by approximately 50%. Detailed analysis of one clone of Novikoff cells transfected with a Cx43 antisense expression vector revealed a reduction in dye uptake levels according to uptake assays and a corresponding decrease in intercellular dye transfer rates in microinjection experiments. In addition, a more limited decrease in membrane resistance upon reduction of extracellular calcium was detected in electrophysiological studies of antisense transfectants, in contrast to control cells. Studies of dye uptake in HeLa cells also demonstrated a large increase following transfection with Cx43. Together these observations indicate that Cx43 is responsible for the hemichannel function in these cultured cells. Similar dye uptake results were obtained with normal rat kidney (NRK) cells, which express Cx43. Dye uptake can be dramatically inhibited by 12-O-tetradeconylphorbol-13-acetate-activated protein kinase C in these cell systems and by a temperature-sensitive tyrosine protein kinase, pp60v-src in LA25-NRK cells. We conclude that Cx43 hemichannels are found in the plasma membrane, where they are regulated by multiple signaling pathways, and likely represent an important stage in gap junction assembly. The Rockefeller University Press 1996-08-02 /pmc/articles/PMC2120949/ /pubmed/8769424 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells
title Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells
title_full Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells
title_fullStr Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells
title_full_unstemmed Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells
title_short Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells
title_sort properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120949/
https://www.ncbi.nlm.nih.gov/pubmed/8769424