Cargando…

Fc epsilon RI-mediated association of 6-micron beads with RBL-2H3 mast cells results in exclusion of signaling proteins from the forming phagosome and abrogation of normal downstream signaling

Cells of the mucosal mast cell line, RBL-2H3, are normally stimulated to degranulate after aggregation of high affinity receptors for IgE (Fc epsilon RI) by soluble cross-linking ligands. This cellular degranulation process requires sustained elevation of cytoplasmic Ca2+. In this study, we investig...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2121002/
https://www.ncbi.nlm.nih.gov/pubmed/8830772
_version_ 1782141627595227136
collection PubMed
description Cells of the mucosal mast cell line, RBL-2H3, are normally stimulated to degranulate after aggregation of high affinity receptors for IgE (Fc epsilon RI) by soluble cross-linking ligands. This cellular degranulation process requires sustained elevation of cytoplasmic Ca2+. In this study, we investigated the response of RBL-2H3 cells to 6- micron beads coated with IgE-specific ligands. These ligand-coated beads cause only small, transient Ca2+ responses, even though the same ligands added in soluble form cause larger, more sustained Ca2+ responses. The ligand-coated 6-micron beads also fail to stimulate significant degranulation of RBL-2H3 cells, whereas much larger ligand- coated Sepharose beads stimulate ample degranulation. Confocal fluorescence microscopy shows that the 6-micron beads (but not the Sepharose beads) are phagocytosed by RBL-2H3 cells and that, beginning with the initial stages of bead engulfment, there is exclusion of many plasma membrane components from the 6-micron bead/cell interface, including p53/56lyn and several other markers for detergent-resistant membrane domains, as well as an integrin and unliganded IgE-Fc epsilon RI. The fluorescent lipid probe DiIC16 is a marker for the membrane domains that is excluded from the cell/bead interface, whereas a structural analogue, fast DiI, which differs from DiIC16 by the presence of unsaturated acyl chains, is not substantially excluded from the interface. None of these components are excluded from the interface of RBL-2H3 cells and the large Sepharose beads. Additional confocal microscopy analysis indicates that microfilaments are involved in the exclusion of plasma membrane components from the cell/bead interface. These results suggest that initiation of phagocytosis diverts normal signaling pathways in a cytoskeleton-driven membrane clearance process that alters the physiological response of the cells.
format Text
id pubmed-2121002
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21210022008-05-01 Fc epsilon RI-mediated association of 6-micron beads with RBL-2H3 mast cells results in exclusion of signaling proteins from the forming phagosome and abrogation of normal downstream signaling J Cell Biol Articles Cells of the mucosal mast cell line, RBL-2H3, are normally stimulated to degranulate after aggregation of high affinity receptors for IgE (Fc epsilon RI) by soluble cross-linking ligands. This cellular degranulation process requires sustained elevation of cytoplasmic Ca2+. In this study, we investigated the response of RBL-2H3 cells to 6- micron beads coated with IgE-specific ligands. These ligand-coated beads cause only small, transient Ca2+ responses, even though the same ligands added in soluble form cause larger, more sustained Ca2+ responses. The ligand-coated 6-micron beads also fail to stimulate significant degranulation of RBL-2H3 cells, whereas much larger ligand- coated Sepharose beads stimulate ample degranulation. Confocal fluorescence microscopy shows that the 6-micron beads (but not the Sepharose beads) are phagocytosed by RBL-2H3 cells and that, beginning with the initial stages of bead engulfment, there is exclusion of many plasma membrane components from the 6-micron bead/cell interface, including p53/56lyn and several other markers for detergent-resistant membrane domains, as well as an integrin and unliganded IgE-Fc epsilon RI. The fluorescent lipid probe DiIC16 is a marker for the membrane domains that is excluded from the cell/bead interface, whereas a structural analogue, fast DiI, which differs from DiIC16 by the presence of unsaturated acyl chains, is not substantially excluded from the interface. None of these components are excluded from the interface of RBL-2H3 cells and the large Sepharose beads. Additional confocal microscopy analysis indicates that microfilaments are involved in the exclusion of plasma membrane components from the cell/bead interface. These results suggest that initiation of phagocytosis diverts normal signaling pathways in a cytoskeleton-driven membrane clearance process that alters the physiological response of the cells. The Rockefeller University Press 1996-09-02 /pmc/articles/PMC2121002/ /pubmed/8830772 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Fc epsilon RI-mediated association of 6-micron beads with RBL-2H3 mast cells results in exclusion of signaling proteins from the forming phagosome and abrogation of normal downstream signaling
title Fc epsilon RI-mediated association of 6-micron beads with RBL-2H3 mast cells results in exclusion of signaling proteins from the forming phagosome and abrogation of normal downstream signaling
title_full Fc epsilon RI-mediated association of 6-micron beads with RBL-2H3 mast cells results in exclusion of signaling proteins from the forming phagosome and abrogation of normal downstream signaling
title_fullStr Fc epsilon RI-mediated association of 6-micron beads with RBL-2H3 mast cells results in exclusion of signaling proteins from the forming phagosome and abrogation of normal downstream signaling
title_full_unstemmed Fc epsilon RI-mediated association of 6-micron beads with RBL-2H3 mast cells results in exclusion of signaling proteins from the forming phagosome and abrogation of normal downstream signaling
title_short Fc epsilon RI-mediated association of 6-micron beads with RBL-2H3 mast cells results in exclusion of signaling proteins from the forming phagosome and abrogation of normal downstream signaling
title_sort fc epsilon ri-mediated association of 6-micron beads with rbl-2h3 mast cells results in exclusion of signaling proteins from the forming phagosome and abrogation of normal downstream signaling
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2121002/
https://www.ncbi.nlm.nih.gov/pubmed/8830772