Cargando…

Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions

Polymorphonuclear leukocytes (PMN) infiltration into tissues is frequently accompanied by increase in vascular permeability. This suggests that PMN adhesion and transmigration could trigger modifications in the architecture of endothelial cell-to-cell junctions. In the present paper, using indirect...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2121047/
https://www.ncbi.nlm.nih.gov/pubmed/8896605
_version_ 1782141638174310400
collection PubMed
description Polymorphonuclear leukocytes (PMN) infiltration into tissues is frequently accompanied by increase in vascular permeability. This suggests that PMN adhesion and transmigration could trigger modifications in the architecture of endothelial cell-to-cell junctions. In the present paper, using indirect immunofluorescence, we found that PMN adhesion to tumor necrosis factor-activated endothelial cells (EC) induced the disappearance from endothelial cell-to-cell contacts of adherens junction (AJ) components: vascular endothelial (VE)-cadherin, alpha-catenin, beta-catenin, and plakoglobin. Immunoprecipitation and Western blot analysis of the VE- cadherin/catenin complex showed that the amount of beta-catenin and plakoglobin was markedly reduced from the complex and from total cell extracts. In contrast, VE-cadherin and alpha-catenin were only partially affected. Disorganization of endothelial AJ by PMN was not accompanied by EC retraction or injury and was specific for VE- cadherin/catenin complex, since platelet/endothelial cell adhesion molecule 1 (PECAM-1) distribution at cellular contacts was unchanged. PMN adhesion to EC seems to be a prerequisite for VE-cadherin/catenin complex disorganization. This phenomenon could be fully inhibited by blocking PMN adhesion with an anti-integrin beta 2 mAb, while it could be reproduced by any condition that induced increase of PMN adhesion, such as addition of PMA or an anti-beta 2-activating mAb. The effect on endothelial AJ was specific for PMN since adherent activated lymphocytes did not induce similar changes. High concentrations of protease inhibitors and oxygen metabolite scavengers were unable to prevent AJ disorganization mediated by PMN. PMN adhesion to EC was accompanied by increase in EC permeability in vitro. This effect was dependent on PMN adhesion, was not mediated by proteases and oxygen- reactive metabolites, and could be reproduced by EC treatment with EGTA. Finally, immunohistochemical analysis showed that VE-cadherin distribution was affected by PMN adhesion to the vessel wall in vivo too. This work suggests that PMN adhesion could trigger intracellular signals in EC that possibly regulate VE-cadherin /catenin complex disorganization. This effect could increase EC permeability and facilitate PMN transmigration during the acute inflammatory reaction.
format Text
id pubmed-2121047
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21210472008-05-01 Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions J Cell Biol Articles Polymorphonuclear leukocytes (PMN) infiltration into tissues is frequently accompanied by increase in vascular permeability. This suggests that PMN adhesion and transmigration could trigger modifications in the architecture of endothelial cell-to-cell junctions. In the present paper, using indirect immunofluorescence, we found that PMN adhesion to tumor necrosis factor-activated endothelial cells (EC) induced the disappearance from endothelial cell-to-cell contacts of adherens junction (AJ) components: vascular endothelial (VE)-cadherin, alpha-catenin, beta-catenin, and plakoglobin. Immunoprecipitation and Western blot analysis of the VE- cadherin/catenin complex showed that the amount of beta-catenin and plakoglobin was markedly reduced from the complex and from total cell extracts. In contrast, VE-cadherin and alpha-catenin were only partially affected. Disorganization of endothelial AJ by PMN was not accompanied by EC retraction or injury and was specific for VE- cadherin/catenin complex, since platelet/endothelial cell adhesion molecule 1 (PECAM-1) distribution at cellular contacts was unchanged. PMN adhesion to EC seems to be a prerequisite for VE-cadherin/catenin complex disorganization. This phenomenon could be fully inhibited by blocking PMN adhesion with an anti-integrin beta 2 mAb, while it could be reproduced by any condition that induced increase of PMN adhesion, such as addition of PMA or an anti-beta 2-activating mAb. The effect on endothelial AJ was specific for PMN since adherent activated lymphocytes did not induce similar changes. High concentrations of protease inhibitors and oxygen metabolite scavengers were unable to prevent AJ disorganization mediated by PMN. PMN adhesion to EC was accompanied by increase in EC permeability in vitro. This effect was dependent on PMN adhesion, was not mediated by proteases and oxygen- reactive metabolites, and could be reproduced by EC treatment with EGTA. Finally, immunohistochemical analysis showed that VE-cadherin distribution was affected by PMN adhesion to the vessel wall in vivo too. This work suggests that PMN adhesion could trigger intracellular signals in EC that possibly regulate VE-cadherin /catenin complex disorganization. This effect could increase EC permeability and facilitate PMN transmigration during the acute inflammatory reaction. The Rockefeller University Press 1996-10-02 /pmc/articles/PMC2121047/ /pubmed/8896605 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions
title Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions
title_full Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions
title_fullStr Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions
title_full_unstemmed Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions
title_short Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions
title_sort polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2121047/
https://www.ncbi.nlm.nih.gov/pubmed/8896605