Cargando…

Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction

Wingless, the Drosophila homologue of the proto-oncogene Wnt-1, encodes a secreted glycoprotein that regulates differentiation and proliferation of nearby cells. Here we report on the biochemical mechanism(s) by which the wingless signal is transmitted from cell to cell. When expressed in S2 cells,...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2121077/
https://www.ncbi.nlm.nih.gov/pubmed/8909553
_version_ 1782141645320355840
collection PubMed
description Wingless, the Drosophila homologue of the proto-oncogene Wnt-1, encodes a secreted glycoprotein that regulates differentiation and proliferation of nearby cells. Here we report on the biochemical mechanism(s) by which the wingless signal is transmitted from cell to cell. When expressed in S2 cells, the majority (approximately 83%) of secreted wingless protein (WG) is bound to the cell surface and extracellular matrix through specific, noncovalent interactions. The tethered WG can be released by addition of exogenous heparan sulfate and chondroitin sulfate glycosaminoglycans. WG also binds directly to heparin agarose beads with high affinity. These data suggest that WG can bind to the cell surface via naturally occurring sulfated proteoglycans. Two lines of evidence indicate that extracellular glycosaminoglycans on the receiving cells also play a functional role in WG signaling. First, treatment of WG-responsive cells with glycosaminoglycan lyases reduced WG activity by 50%. Second, when WG- responsive cells were preincubated with 1 mM chlorate, which blocks sulfation, WG activity was inhibited to near-basal levels. Addition of exogenous heparin to the chlorate-treated cells was able to restore WG activity. Based on these results, we propose that WG belongs to the group of growth factor ligands whose actions are mediated by extracellular proteoglycan molecules.
format Text
id pubmed-2121077
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21210772008-05-01 Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction J Cell Biol Articles Wingless, the Drosophila homologue of the proto-oncogene Wnt-1, encodes a secreted glycoprotein that regulates differentiation and proliferation of nearby cells. Here we report on the biochemical mechanism(s) by which the wingless signal is transmitted from cell to cell. When expressed in S2 cells, the majority (approximately 83%) of secreted wingless protein (WG) is bound to the cell surface and extracellular matrix through specific, noncovalent interactions. The tethered WG can be released by addition of exogenous heparan sulfate and chondroitin sulfate glycosaminoglycans. WG also binds directly to heparin agarose beads with high affinity. These data suggest that WG can bind to the cell surface via naturally occurring sulfated proteoglycans. Two lines of evidence indicate that extracellular glycosaminoglycans on the receiving cells also play a functional role in WG signaling. First, treatment of WG-responsive cells with glycosaminoglycan lyases reduced WG activity by 50%. Second, when WG- responsive cells were preincubated with 1 mM chlorate, which blocks sulfation, WG activity was inhibited to near-basal levels. Addition of exogenous heparin to the chlorate-treated cells was able to restore WG activity. Based on these results, we propose that WG belongs to the group of growth factor ligands whose actions are mediated by extracellular proteoglycan molecules. The Rockefeller University Press 1996-11-01 /pmc/articles/PMC2121077/ /pubmed/8909553 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction
title Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction
title_full Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction
title_fullStr Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction
title_full_unstemmed Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction
title_short Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction
title_sort glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2121077/
https://www.ncbi.nlm.nih.gov/pubmed/8909553