Cargando…
A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding
Formation of non-clathrin-coated vesicles requires the recruitment of several cytosolic factors to the Golgi membrane. To identify membrane proteins involved in this budding process, a highly abundant type I transmembrane protein (p23) was isolated from mammalian Golgi-derived COPI-coated vesicles,...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1996
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2121093/ https://www.ncbi.nlm.nih.gov/pubmed/8947548 |
_version_ | 1782141649109909504 |
---|---|
collection | PubMed |
description | Formation of non-clathrin-coated vesicles requires the recruitment of several cytosolic factors to the Golgi membrane. To identify membrane proteins involved in this budding process, a highly abundant type I transmembrane protein (p23) was isolated from mammalian Golgi-derived COPI-coated vesicles, and its cDNA was cloned and sequenced. It belongs to the p24 family of proteins involved in the budding of transport vesicles (Stamnes, M.A., M.W. Craighead, M.H. Hoe, N. Lampen, S. Geromanos, P. Tempst, and J.E. Rothman. 1995. Proc. Natl. Acad. Sci. USA. 92:8011-8015). p23 consists of a large NH2-terminal luminal domain and a short COOH-terminal cytoplasmic tail (-LRRFFKAKKLIE-CO2-) that shows similarity, but not identity, with the sequence motif-KKXX-CO2-, known as a signal for retrieval of escaped ER-resident membrane proteins (Jackson, M.R., T. Nilsson, and P.A. Peterson. 1990. EMBO (Eur. Mol. Biol. Organ.) J. 9:3153-3162; Nilsson, T., M. Jackson, and P.A. Peterson. 1989. Cell. 58:707-718). The cytoplasmic tail of p23 binds to coatomer with similar efficiency as known KKXX motifs. However, the p23 tail differs from the KKXX motif in having an additional motif needed for binding of coatomer. p23 is localized to Golgi cisternae and, during vesicle formation, it concentrates into COPI-coated buds and vesicles. Biochemical analysis revealed that p23 is enriched in vesicles by a factor of approximately 20, as compared with the donor Golgi fraction, and is present in amounts stoichiometric to the small GTP-binding protein ADP-ribosylation factor (ARF) and coatomer. From these data we conclude that p23 represents a Golgi- specific receptor for coatomer involved in the formation of COPI-coated vesicles. |
format | Text |
id | pubmed-2121093 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1996 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21210932008-05-01 A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding J Cell Biol Articles Formation of non-clathrin-coated vesicles requires the recruitment of several cytosolic factors to the Golgi membrane. To identify membrane proteins involved in this budding process, a highly abundant type I transmembrane protein (p23) was isolated from mammalian Golgi-derived COPI-coated vesicles, and its cDNA was cloned and sequenced. It belongs to the p24 family of proteins involved in the budding of transport vesicles (Stamnes, M.A., M.W. Craighead, M.H. Hoe, N. Lampen, S. Geromanos, P. Tempst, and J.E. Rothman. 1995. Proc. Natl. Acad. Sci. USA. 92:8011-8015). p23 consists of a large NH2-terminal luminal domain and a short COOH-terminal cytoplasmic tail (-LRRFFKAKKLIE-CO2-) that shows similarity, but not identity, with the sequence motif-KKXX-CO2-, known as a signal for retrieval of escaped ER-resident membrane proteins (Jackson, M.R., T. Nilsson, and P.A. Peterson. 1990. EMBO (Eur. Mol. Biol. Organ.) J. 9:3153-3162; Nilsson, T., M. Jackson, and P.A. Peterson. 1989. Cell. 58:707-718). The cytoplasmic tail of p23 binds to coatomer with similar efficiency as known KKXX motifs. However, the p23 tail differs from the KKXX motif in having an additional motif needed for binding of coatomer. p23 is localized to Golgi cisternae and, during vesicle formation, it concentrates into COPI-coated buds and vesicles. Biochemical analysis revealed that p23 is enriched in vesicles by a factor of approximately 20, as compared with the donor Golgi fraction, and is present in amounts stoichiometric to the small GTP-binding protein ADP-ribosylation factor (ARF) and coatomer. From these data we conclude that p23 represents a Golgi- specific receptor for coatomer involved in the formation of COPI-coated vesicles. The Rockefeller University Press 1996-12-01 /pmc/articles/PMC2121093/ /pubmed/8947548 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding |
title | A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding |
title_full | A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding |
title_fullStr | A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding |
title_full_unstemmed | A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding |
title_short | A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding |
title_sort | major transmembrane protein of golgi-derived copi-coated vesicles involved in coatomer binding |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2121093/ https://www.ncbi.nlm.nih.gov/pubmed/8947548 |