Cargando…

ON THE MECHANISM OF THE SERUM SENSITIZATION OF ACID-FAST BACTERIA

Serum sensitization of the acid-fast bacteria causes two definite and directly observable changes in the bacterial surface: 1. A change from a surface readily wet by oil to a surface more readily wet by aqueous salt solution than by oil. This change is observed by microscopic examination of the bact...

Descripción completa

Detalles Bibliográficos
Autores principales: Mudd, Stuart, Mudd, Emily B. H.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1927
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2131260/
https://www.ncbi.nlm.nih.gov/pubmed/19869324
_version_ 1782142202371112960
author Mudd, Stuart
Mudd, Emily B. H.
author_facet Mudd, Stuart
Mudd, Emily B. H.
author_sort Mudd, Stuart
collection PubMed
description Serum sensitization of the acid-fast bacteria causes two definite and directly observable changes in the bacterial surface: 1. A change from a surface readily wet by oil to a surface more readily wet by aqueous salt solution than by oil. This change is observed by microscopic examination of the bacteria in a saline-oil interface; thus detected, the surface alteration is said to constitute a "positive interface reaction." 2. An increased cohesiveness of the sensitized bacteria. This may be detected either by centrifuging the bacteria and then shaking up the sediment (resuspension reaction), or by observation of the clumps in the saline-oil interface. The interface reaction is serologically specific and confirms the existence of qualitative differences among acid-fast bacteria. The interface reaction parallels the binding of agglutinins as detected by the resuspension reaction, but not agglutination as ordinarily tested for. The interface reaction is less sensitive,—i.e., gives lower titers—than the resuspension reaction in about the average ratio of 1:3. The interface reaction in most instances runs approximately parallel to the complement fixation reaction; under at least one set of conditions, however, the interface reaction is correlated with the binding of agglutinin but not with the complement fixation reaction. How much of the bacterial surface must be covered with agglutinin in order to produce agglutination varies greatly with the bacterial strain used. The bacterial surfaces are modified by treatment with fresh normal sera in a manner quantitatively less but qualitatively not observably different from the effects of immune sera. Heating normal human, sheep, goat, or rabbit sera for 30 minutes at 56°C. has usually diminished but not abolished their effect on the bacterial surface. Similar inactivation of guinea pig sera left them without detectable effect on the bacterial surface. The agglutination prezone is shown to be due to interference by excess colloidal material with the collisions of the bacteria prerequisite to clumping. The prezone maybe abolished by centrifugation and resuspension of the sediment. Antibodies may be partially dissociated from the sensitized bacteria by alkali, with return of the bacterial surface toward its normal, unsensitized condition. A carbohydrate yielding on hydrolysis a positive pentose test has been detected in the specific alcohol extracts of acid-fast bacteria studied by Furth and Aronson.(27) The tentative suggestion is made that the alcohol-soluble antigens of acid-fast microorganisms may be conjugated lipins owing their specificity to carbohydrate haptenes. Protective antipneumococcus globulins after heat denaturation have shown behavior in the saline-tricaprylin interface indistinguishable from that of maximally sensitized acid-fast bacteria. This strengthens the evidence suggesting that sensitized bacteria are coated with denatured globulin.
format Text
id pubmed-2131260
institution National Center for Biotechnology Information
language English
publishDate 1927
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21312602008-04-18 ON THE MECHANISM OF THE SERUM SENSITIZATION OF ACID-FAST BACTERIA Mudd, Stuart Mudd, Emily B. H. J Exp Med Article Serum sensitization of the acid-fast bacteria causes two definite and directly observable changes in the bacterial surface: 1. A change from a surface readily wet by oil to a surface more readily wet by aqueous salt solution than by oil. This change is observed by microscopic examination of the bacteria in a saline-oil interface; thus detected, the surface alteration is said to constitute a "positive interface reaction." 2. An increased cohesiveness of the sensitized bacteria. This may be detected either by centrifuging the bacteria and then shaking up the sediment (resuspension reaction), or by observation of the clumps in the saline-oil interface. The interface reaction is serologically specific and confirms the existence of qualitative differences among acid-fast bacteria. The interface reaction parallels the binding of agglutinins as detected by the resuspension reaction, but not agglutination as ordinarily tested for. The interface reaction is less sensitive,—i.e., gives lower titers—than the resuspension reaction in about the average ratio of 1:3. The interface reaction in most instances runs approximately parallel to the complement fixation reaction; under at least one set of conditions, however, the interface reaction is correlated with the binding of agglutinin but not with the complement fixation reaction. How much of the bacterial surface must be covered with agglutinin in order to produce agglutination varies greatly with the bacterial strain used. The bacterial surfaces are modified by treatment with fresh normal sera in a manner quantitatively less but qualitatively not observably different from the effects of immune sera. Heating normal human, sheep, goat, or rabbit sera for 30 minutes at 56°C. has usually diminished but not abolished their effect on the bacterial surface. Similar inactivation of guinea pig sera left them without detectable effect on the bacterial surface. The agglutination prezone is shown to be due to interference by excess colloidal material with the collisions of the bacteria prerequisite to clumping. The prezone maybe abolished by centrifugation and resuspension of the sediment. Antibodies may be partially dissociated from the sensitized bacteria by alkali, with return of the bacterial surface toward its normal, unsensitized condition. A carbohydrate yielding on hydrolysis a positive pentose test has been detected in the specific alcohol extracts of acid-fast bacteria studied by Furth and Aronson.(27) The tentative suggestion is made that the alcohol-soluble antigens of acid-fast microorganisms may be conjugated lipins owing their specificity to carbohydrate haptenes. Protective antipneumococcus globulins after heat denaturation have shown behavior in the saline-tricaprylin interface indistinguishable from that of maximally sensitized acid-fast bacteria. This strengthens the evidence suggesting that sensitized bacteria are coated with denatured globulin. The Rockefeller University Press 1927-06-30 /pmc/articles/PMC2131260/ /pubmed/19869324 Text en Copyright © Copyright, 1927, by The Rockefeller Institute for Medical Research New York This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Mudd, Stuart
Mudd, Emily B. H.
ON THE MECHANISM OF THE SERUM SENSITIZATION OF ACID-FAST BACTERIA
title ON THE MECHANISM OF THE SERUM SENSITIZATION OF ACID-FAST BACTERIA
title_full ON THE MECHANISM OF THE SERUM SENSITIZATION OF ACID-FAST BACTERIA
title_fullStr ON THE MECHANISM OF THE SERUM SENSITIZATION OF ACID-FAST BACTERIA
title_full_unstemmed ON THE MECHANISM OF THE SERUM SENSITIZATION OF ACID-FAST BACTERIA
title_short ON THE MECHANISM OF THE SERUM SENSITIZATION OF ACID-FAST BACTERIA
title_sort on the mechanism of the serum sensitization of acid-fast bacteria
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2131260/
https://www.ncbi.nlm.nih.gov/pubmed/19869324
work_keys_str_mv AT muddstuart onthemechanismoftheserumsensitizationofacidfastbacteria
AT muddemilybh onthemechanismoftheserumsensitizationofacidfastbacteria