Cargando…

MAP Kinase Is Required for the Spindle Assembly Checkpoint but Is Dispensable for the Normal M Phase Entry and Exit in Xenopus Egg Cell Cycle Extracts

In Xenopus laevis egg cell cycle extracts that mimic early embryonic cell cycles, activation of MAP kinase and MAP kinase kinase occurs in M phase, slightly behind that of maturation promoting factor. To examine the possible role of MAP kinase in the in vitro cell cycle, we depleted the extracts of...

Descripción completa

Detalles Bibliográficos
Autores principales: Takenaka, Katsuya, Gotoh, Yukiko, Nishida, Eisuke
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1997
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132469/
https://www.ncbi.nlm.nih.gov/pubmed/9060473
_version_ 1782142453717925888
author Takenaka, Katsuya
Gotoh, Yukiko
Nishida, Eisuke
author_facet Takenaka, Katsuya
Gotoh, Yukiko
Nishida, Eisuke
author_sort Takenaka, Katsuya
collection PubMed
description In Xenopus laevis egg cell cycle extracts that mimic early embryonic cell cycles, activation of MAP kinase and MAP kinase kinase occurs in M phase, slightly behind that of maturation promoting factor. To examine the possible role of MAP kinase in the in vitro cell cycle, we depleted the extracts of MAP kinase by using anti–Xenopus MAP kinase antibody. Like in the mock-treated extracts, the periodic activation and deactivation of MPF occurred normally in the MAP kinase–depleted extracts, suggesting that MAP kinase is dispensable for the normal M phase entry and exit in vitro. It has recently been reported that microtubule depolymerization by nocodazole treatment can block exit from mitosis in the extracts if enough sperm nuclei are present, and that the addition of MAP kinase– specific phosphatase MKP-1 overcomes this spindle assembly checkpoint, suggesting the involvement of MAP kinase in the checkpoint signal transduction. We show here that the spindle assembly checkpoint mechanism cannot operate in the MAP kinase–depleted extracts. But, adding recombinant Xenopus MAP kinase to the MAP kinase–depleted extracts restored the spindle assembly checkpoint. These results indicate unambiguously that classical MAP kinase is required for the spindle assembly checkpoint in the cell cycle extracts. In addition, we show that strong activation of MAP kinase by the addition of a constitutively active MAP kinase kinase kinase in the absence of sperm nuclei and nocodazole, induced mitotic arrest in the extracts. Therefore, activation of MAP kinase alone is sufficient for inducing the mitotic arrest in vitro.
format Text
id pubmed-2132469
institution National Center for Biotechnology Information
language English
publishDate 1997
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21324692008-05-01 MAP Kinase Is Required for the Spindle Assembly Checkpoint but Is Dispensable for the Normal M Phase Entry and Exit in Xenopus Egg Cell Cycle Extracts Takenaka, Katsuya Gotoh, Yukiko Nishida, Eisuke J Cell Biol Article In Xenopus laevis egg cell cycle extracts that mimic early embryonic cell cycles, activation of MAP kinase and MAP kinase kinase occurs in M phase, slightly behind that of maturation promoting factor. To examine the possible role of MAP kinase in the in vitro cell cycle, we depleted the extracts of MAP kinase by using anti–Xenopus MAP kinase antibody. Like in the mock-treated extracts, the periodic activation and deactivation of MPF occurred normally in the MAP kinase–depleted extracts, suggesting that MAP kinase is dispensable for the normal M phase entry and exit in vitro. It has recently been reported that microtubule depolymerization by nocodazole treatment can block exit from mitosis in the extracts if enough sperm nuclei are present, and that the addition of MAP kinase– specific phosphatase MKP-1 overcomes this spindle assembly checkpoint, suggesting the involvement of MAP kinase in the checkpoint signal transduction. We show here that the spindle assembly checkpoint mechanism cannot operate in the MAP kinase–depleted extracts. But, adding recombinant Xenopus MAP kinase to the MAP kinase–depleted extracts restored the spindle assembly checkpoint. These results indicate unambiguously that classical MAP kinase is required for the spindle assembly checkpoint in the cell cycle extracts. In addition, we show that strong activation of MAP kinase by the addition of a constitutively active MAP kinase kinase kinase in the absence of sperm nuclei and nocodazole, induced mitotic arrest in the extracts. Therefore, activation of MAP kinase alone is sufficient for inducing the mitotic arrest in vitro. The Rockefeller University Press 1997-03-10 /pmc/articles/PMC2132469/ /pubmed/9060473 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Takenaka, Katsuya
Gotoh, Yukiko
Nishida, Eisuke
MAP Kinase Is Required for the Spindle Assembly Checkpoint but Is Dispensable for the Normal M Phase Entry and Exit in Xenopus Egg Cell Cycle Extracts
title MAP Kinase Is Required for the Spindle Assembly Checkpoint but Is Dispensable for the Normal M Phase Entry and Exit in Xenopus Egg Cell Cycle Extracts
title_full MAP Kinase Is Required for the Spindle Assembly Checkpoint but Is Dispensable for the Normal M Phase Entry and Exit in Xenopus Egg Cell Cycle Extracts
title_fullStr MAP Kinase Is Required for the Spindle Assembly Checkpoint but Is Dispensable for the Normal M Phase Entry and Exit in Xenopus Egg Cell Cycle Extracts
title_full_unstemmed MAP Kinase Is Required for the Spindle Assembly Checkpoint but Is Dispensable for the Normal M Phase Entry and Exit in Xenopus Egg Cell Cycle Extracts
title_short MAP Kinase Is Required for the Spindle Assembly Checkpoint but Is Dispensable for the Normal M Phase Entry and Exit in Xenopus Egg Cell Cycle Extracts
title_sort map kinase is required for the spindle assembly checkpoint but is dispensable for the normal m phase entry and exit in xenopus egg cell cycle extracts
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132469/
https://www.ncbi.nlm.nih.gov/pubmed/9060473
work_keys_str_mv AT takenakakatsuya mapkinaseisrequiredforthespindleassemblycheckpointbutisdispensableforthenormalmphaseentryandexitinxenopuseggcellcycleextracts
AT gotohyukiko mapkinaseisrequiredforthespindleassemblycheckpointbutisdispensableforthenormalmphaseentryandexitinxenopuseggcellcycleextracts
AT nishidaeisuke mapkinaseisrequiredforthespindleassemblycheckpointbutisdispensableforthenormalmphaseentryandexitinxenopuseggcellcycleextracts