Cargando…

Pleckstrin Associates with Plasma Membranes and Induces the Formation of Membrane Projections: Requirements for Phosphorylation and the NH(2)-terminal PH Domain

Pleckstrin homology (PH) domains are sequences of ∼100 amino acids that form “modules” that have been proposed to facilitate protein/protein or protein/lipid interactions. Pleckstrin, first described as a substrate for protein kinase C in platelets and leukocytes, is composed of two PH domains, one...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Alice D., Brass, Lawrence F., Abrams, Charles S.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1997
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132483/
https://www.ncbi.nlm.nih.gov/pubmed/9060471
_version_ 1782142456987385856
author Ma, Alice D.
Brass, Lawrence F.
Abrams, Charles S.
author_facet Ma, Alice D.
Brass, Lawrence F.
Abrams, Charles S.
author_sort Ma, Alice D.
collection PubMed
description Pleckstrin homology (PH) domains are sequences of ∼100 amino acids that form “modules” that have been proposed to facilitate protein/protein or protein/lipid interactions. Pleckstrin, first described as a substrate for protein kinase C in platelets and leukocytes, is composed of two PH domains, one at each end of the molecule, flanking an intervening sequence of 147 residues. Evidence is accumulating to support the hypothesis that PH domains are structural motifs that target molecules to membranes, perhaps through interactions with Gβγ or phosphatidylinositol 4,5-bisphosphate (PIP(2)), two putative PH domain ligands. In the present studies, we show that pleckstrin associates with membranes in human platelets. We further demonstrate that, in transfected Cos-1 cells, pleckstrin associates with peripheral membrane ruffles and dorsal membrane projections. This association depends on phosphorylation of pleckstrin and requires the presence of its NH(2)-terminal, but not its COOH-terminal, PH domain. Moreover, PH domains from other molecules cannot effectively substitute for pleckstrin's NH(2)terminal PH domain in directing membrane localization. Lastly, we show that wild-type pleckstrin actually promotes the formation of membrane projections from the dorsal surface of transfected cells, and that this morphologic change is similarly PH domain dependent. Since we have shown previously that pleckstrin-mediated inhibition of PIP(2) metabolism by phospholipase C or phosphatidylinositol 3-kinase also requires pleckstrin phosphorylation and an intact NH(2)-terminal PH domain, these results suggest that: (a) pleckstrin's NH(2)terminal PH domain may regulate pleckstrin's activity by targeting it to specific areas within the cell membrane; and (b) pleckstrin may affect membrane structure, perhaps via interactions with PIP(2) and/or other membrane-bound ligands.
format Text
id pubmed-2132483
institution National Center for Biotechnology Information
language English
publishDate 1997
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21324832008-05-01 Pleckstrin Associates with Plasma Membranes and Induces the Formation of Membrane Projections: Requirements for Phosphorylation and the NH(2)-terminal PH Domain Ma, Alice D. Brass, Lawrence F. Abrams, Charles S. J Cell Biol Article Pleckstrin homology (PH) domains are sequences of ∼100 amino acids that form “modules” that have been proposed to facilitate protein/protein or protein/lipid interactions. Pleckstrin, first described as a substrate for protein kinase C in platelets and leukocytes, is composed of two PH domains, one at each end of the molecule, flanking an intervening sequence of 147 residues. Evidence is accumulating to support the hypothesis that PH domains are structural motifs that target molecules to membranes, perhaps through interactions with Gβγ or phosphatidylinositol 4,5-bisphosphate (PIP(2)), two putative PH domain ligands. In the present studies, we show that pleckstrin associates with membranes in human platelets. We further demonstrate that, in transfected Cos-1 cells, pleckstrin associates with peripheral membrane ruffles and dorsal membrane projections. This association depends on phosphorylation of pleckstrin and requires the presence of its NH(2)-terminal, but not its COOH-terminal, PH domain. Moreover, PH domains from other molecules cannot effectively substitute for pleckstrin's NH(2)terminal PH domain in directing membrane localization. Lastly, we show that wild-type pleckstrin actually promotes the formation of membrane projections from the dorsal surface of transfected cells, and that this morphologic change is similarly PH domain dependent. Since we have shown previously that pleckstrin-mediated inhibition of PIP(2) metabolism by phospholipase C or phosphatidylinositol 3-kinase also requires pleckstrin phosphorylation and an intact NH(2)-terminal PH domain, these results suggest that: (a) pleckstrin's NH(2)terminal PH domain may regulate pleckstrin's activity by targeting it to specific areas within the cell membrane; and (b) pleckstrin may affect membrane structure, perhaps via interactions with PIP(2) and/or other membrane-bound ligands. The Rockefeller University Press 1997-03-10 /pmc/articles/PMC2132483/ /pubmed/9060471 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Ma, Alice D.
Brass, Lawrence F.
Abrams, Charles S.
Pleckstrin Associates with Plasma Membranes and Induces the Formation of Membrane Projections: Requirements for Phosphorylation and the NH(2)-terminal PH Domain
title Pleckstrin Associates with Plasma Membranes and Induces the Formation of Membrane Projections: Requirements for Phosphorylation and the NH(2)-terminal PH Domain
title_full Pleckstrin Associates with Plasma Membranes and Induces the Formation of Membrane Projections: Requirements for Phosphorylation and the NH(2)-terminal PH Domain
title_fullStr Pleckstrin Associates with Plasma Membranes and Induces the Formation of Membrane Projections: Requirements for Phosphorylation and the NH(2)-terminal PH Domain
title_full_unstemmed Pleckstrin Associates with Plasma Membranes and Induces the Formation of Membrane Projections: Requirements for Phosphorylation and the NH(2)-terminal PH Domain
title_short Pleckstrin Associates with Plasma Membranes and Induces the Formation of Membrane Projections: Requirements for Phosphorylation and the NH(2)-terminal PH Domain
title_sort pleckstrin associates with plasma membranes and induces the formation of membrane projections: requirements for phosphorylation and the nh(2)-terminal ph domain
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132483/
https://www.ncbi.nlm.nih.gov/pubmed/9060471
work_keys_str_mv AT maaliced pleckstrinassociateswithplasmamembranesandinducestheformationofmembraneprojectionsrequirementsforphosphorylationandthenh2terminalphdomain
AT brasslawrencef pleckstrinassociateswithplasmamembranesandinducestheformationofmembraneprojectionsrequirementsforphosphorylationandthenh2terminalphdomain
AT abramscharless pleckstrinassociateswithplasmamembranesandinducestheformationofmembraneprojectionsrequirementsforphosphorylationandthenh2terminalphdomain