Cargando…

Induction of Growth Cone Formation by Transient and Localized Increases of Intracellular Proteolytic Activity

The formation of a growth cone at the tip of a transected axon is a crucial step in the subsequent regeneration of the amputated axon. During this process, the transected axon is transformed from a static segment into a motile growth cone. Despite the importance of this process for regeneration of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Ziv, Noam E., Spira, Micha E.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1998
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132593/
https://www.ncbi.nlm.nih.gov/pubmed/9425169
_version_ 1782142481548181504
author Ziv, Noam E.
Spira, Micha E.
author_facet Ziv, Noam E.
Spira, Micha E.
author_sort Ziv, Noam E.
collection PubMed
description The formation of a growth cone at the tip of a transected axon is a crucial step in the subsequent regeneration of the amputated axon. During this process, the transected axon is transformed from a static segment into a motile growth cone. Despite the importance of this process for regeneration of the severed axon, little is known about the mechanisms underlying this transformation. Recent studies have suggested that Ca(2+)-activated proteinases underlay the morphological remodeling of neurons after injury. However, this hypothesis was never tested directly. Here we tested the ability of transient and localized increases in intracellular proteolytic activity to induce growth cone formation and neuritogenesis. Minute amounts of the proteinase trypsin were microinjected into intact axonal segments or somata of cultured Aplysia neurons, transiently elevating the intracellular protease concentration to 13–130 nM in the vicinity of the injection site. Such microinjections were followed by the formation of ectopic growth cones and irreversible neuritogenesis. Growth cones were not formed after external application of trypsin, microinjection of the carrier solution, or inactivated trypsin. Growth cone formation was not preceded by increases in free intracellular Ca(2+) or changes in passive membrane properties, and was blocked by inhibitors of actin and tubulin polymerization. Trypsin-induced neuritogenesis was associated with ultrastructural alterations similar to those observed by us after axotomy. We conclude that local and transient elevations of cytoplasmic proteolytic activity can induce growth cone formation and neuritogenesis, and suggest that localized proteolytic activity plays a role in growth cone formation after axotomy.
format Text
id pubmed-2132593
institution National Center for Biotechnology Information
language English
publishDate 1998
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21325932008-05-01 Induction of Growth Cone Formation by Transient and Localized Increases of Intracellular Proteolytic Activity Ziv, Noam E. Spira, Micha E. J Cell Biol Article The formation of a growth cone at the tip of a transected axon is a crucial step in the subsequent regeneration of the amputated axon. During this process, the transected axon is transformed from a static segment into a motile growth cone. Despite the importance of this process for regeneration of the severed axon, little is known about the mechanisms underlying this transformation. Recent studies have suggested that Ca(2+)-activated proteinases underlay the morphological remodeling of neurons after injury. However, this hypothesis was never tested directly. Here we tested the ability of transient and localized increases in intracellular proteolytic activity to induce growth cone formation and neuritogenesis. Minute amounts of the proteinase trypsin were microinjected into intact axonal segments or somata of cultured Aplysia neurons, transiently elevating the intracellular protease concentration to 13–130 nM in the vicinity of the injection site. Such microinjections were followed by the formation of ectopic growth cones and irreversible neuritogenesis. Growth cones were not formed after external application of trypsin, microinjection of the carrier solution, or inactivated trypsin. Growth cone formation was not preceded by increases in free intracellular Ca(2+) or changes in passive membrane properties, and was blocked by inhibitors of actin and tubulin polymerization. Trypsin-induced neuritogenesis was associated with ultrastructural alterations similar to those observed by us after axotomy. We conclude that local and transient elevations of cytoplasmic proteolytic activity can induce growth cone formation and neuritogenesis, and suggest that localized proteolytic activity plays a role in growth cone formation after axotomy. The Rockefeller University Press 1998-01-12 /pmc/articles/PMC2132593/ /pubmed/9425169 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Ziv, Noam E.
Spira, Micha E.
Induction of Growth Cone Formation by Transient and Localized Increases of Intracellular Proteolytic Activity
title Induction of Growth Cone Formation by Transient and Localized Increases of Intracellular Proteolytic Activity
title_full Induction of Growth Cone Formation by Transient and Localized Increases of Intracellular Proteolytic Activity
title_fullStr Induction of Growth Cone Formation by Transient and Localized Increases of Intracellular Proteolytic Activity
title_full_unstemmed Induction of Growth Cone Formation by Transient and Localized Increases of Intracellular Proteolytic Activity
title_short Induction of Growth Cone Formation by Transient and Localized Increases of Intracellular Proteolytic Activity
title_sort induction of growth cone formation by transient and localized increases of intracellular proteolytic activity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132593/
https://www.ncbi.nlm.nih.gov/pubmed/9425169
work_keys_str_mv AT zivnoame inductionofgrowthconeformationbytransientandlocalizedincreasesofintracellularproteolyticactivity
AT spiramichae inductionofgrowthconeformationbytransientandlocalizedincreasesofintracellularproteolyticactivity