Cargando…
Muscle β1D Integrin Reinforces the Cytoskeleton–Matrix Link: Modulation of Integrin Adhesive Function by Alternative Splicing
Expression of muscle-specific β1D integrin with an alternatively spliced cytoplasmic domain in CHO and GD25, β1 integrin-minus cells leads to their phenotypic conversion. β1D-transfected nonmuscle cells display rounded morphology, lack of pseudopodial activity, retarded spreading, reduced migration,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1997
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132630/ https://www.ncbi.nlm.nih.gov/pubmed/9396762 |
_version_ | 1782142489847660544 |
---|---|
author | Belkin, Alexey M. Retta, S. Francesco Pletjushkina, Olga Y. Balzac, Fiorella Silengo, Lorenzo Fassler, Reinhard Koteliansky, Victor E. Burridge, Keith Tarone, Guido |
author_facet | Belkin, Alexey M. Retta, S. Francesco Pletjushkina, Olga Y. Balzac, Fiorella Silengo, Lorenzo Fassler, Reinhard Koteliansky, Victor E. Burridge, Keith Tarone, Guido |
author_sort | Belkin, Alexey M. |
collection | PubMed |
description | Expression of muscle-specific β1D integrin with an alternatively spliced cytoplasmic domain in CHO and GD25, β1 integrin-minus cells leads to their phenotypic conversion. β1D-transfected nonmuscle cells display rounded morphology, lack of pseudopodial activity, retarded spreading, reduced migration, and significantly enhanced contractility compared with their β1A-expressing counterparts. The transfected β1D is targeted to focal adhesions and efficiently displaces the endogenous β1A and αvβ3 integrins from the sites of cell–matrix contact. This displacement is observed on several types of extracellular matrix substrata and leads to elevated stability of focal adhesions in β1D transfectants. Whereas a significant part of cellular β1A integrin is extractable in digitonin, the majority of the transfected β1D is digitonin-insoluble and is strongly associated with the detergent-insoluble cytoskeleton. Increased interaction of β1D integrin with the actin cytoskeleton is consistent with and might be mediated by its enhanced binding to talin. In contrast, β1A interacts more strongly with α-actinin, than β1D. Inside-out driven activation of the β1D ectodomain increases ligand binding and fibronectin matrix assembly by β1D transfectants. Phenotypic effects of β1D integrin expression in nonmuscle cells are due to its enhanced interactions with both cytoskeletal and extracellular ligands. They parallel the transitions that muscle cells undergo during differentiation. Modulation of β1 integrin adhesive function by alternative splicing serves as a physiological mechanism reinforcing the cytoskeleton– matrix link in muscle cells. This reflects the major role for β1D integrin in muscle, where extremely stable association is required for contraction. |
format | Text |
id | pubmed-2132630 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1997 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21326302008-05-01 Muscle β1D Integrin Reinforces the Cytoskeleton–Matrix Link: Modulation of Integrin Adhesive Function by Alternative Splicing Belkin, Alexey M. Retta, S. Francesco Pletjushkina, Olga Y. Balzac, Fiorella Silengo, Lorenzo Fassler, Reinhard Koteliansky, Victor E. Burridge, Keith Tarone, Guido J Cell Biol Article Expression of muscle-specific β1D integrin with an alternatively spliced cytoplasmic domain in CHO and GD25, β1 integrin-minus cells leads to their phenotypic conversion. β1D-transfected nonmuscle cells display rounded morphology, lack of pseudopodial activity, retarded spreading, reduced migration, and significantly enhanced contractility compared with their β1A-expressing counterparts. The transfected β1D is targeted to focal adhesions and efficiently displaces the endogenous β1A and αvβ3 integrins from the sites of cell–matrix contact. This displacement is observed on several types of extracellular matrix substrata and leads to elevated stability of focal adhesions in β1D transfectants. Whereas a significant part of cellular β1A integrin is extractable in digitonin, the majority of the transfected β1D is digitonin-insoluble and is strongly associated with the detergent-insoluble cytoskeleton. Increased interaction of β1D integrin with the actin cytoskeleton is consistent with and might be mediated by its enhanced binding to talin. In contrast, β1A interacts more strongly with α-actinin, than β1D. Inside-out driven activation of the β1D ectodomain increases ligand binding and fibronectin matrix assembly by β1D transfectants. Phenotypic effects of β1D integrin expression in nonmuscle cells are due to its enhanced interactions with both cytoskeletal and extracellular ligands. They parallel the transitions that muscle cells undergo during differentiation. Modulation of β1 integrin adhesive function by alternative splicing serves as a physiological mechanism reinforcing the cytoskeleton– matrix link in muscle cells. This reflects the major role for β1D integrin in muscle, where extremely stable association is required for contraction. The Rockefeller University Press 1997-12-15 /pmc/articles/PMC2132630/ /pubmed/9396762 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Belkin, Alexey M. Retta, S. Francesco Pletjushkina, Olga Y. Balzac, Fiorella Silengo, Lorenzo Fassler, Reinhard Koteliansky, Victor E. Burridge, Keith Tarone, Guido Muscle β1D Integrin Reinforces the Cytoskeleton–Matrix Link: Modulation of Integrin Adhesive Function by Alternative Splicing |
title | Muscle β1D Integrin Reinforces the Cytoskeleton–Matrix Link: Modulation of Integrin Adhesive Function by Alternative Splicing |
title_full | Muscle β1D Integrin Reinforces the Cytoskeleton–Matrix Link: Modulation of Integrin Adhesive Function by Alternative Splicing |
title_fullStr | Muscle β1D Integrin Reinforces the Cytoskeleton–Matrix Link: Modulation of Integrin Adhesive Function by Alternative Splicing |
title_full_unstemmed | Muscle β1D Integrin Reinforces the Cytoskeleton–Matrix Link: Modulation of Integrin Adhesive Function by Alternative Splicing |
title_short | Muscle β1D Integrin Reinforces the Cytoskeleton–Matrix Link: Modulation of Integrin Adhesive Function by Alternative Splicing |
title_sort | muscle β1d integrin reinforces the cytoskeleton–matrix link: modulation of integrin adhesive function by alternative splicing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132630/ https://www.ncbi.nlm.nih.gov/pubmed/9396762 |
work_keys_str_mv | AT belkinalexeym muscleb1dintegrinreinforcesthecytoskeletonmatrixlinkmodulationofintegrinadhesivefunctionbyalternativesplicing AT rettasfrancesco muscleb1dintegrinreinforcesthecytoskeletonmatrixlinkmodulationofintegrinadhesivefunctionbyalternativesplicing AT pletjushkinaolgay muscleb1dintegrinreinforcesthecytoskeletonmatrixlinkmodulationofintegrinadhesivefunctionbyalternativesplicing AT balzacfiorella muscleb1dintegrinreinforcesthecytoskeletonmatrixlinkmodulationofintegrinadhesivefunctionbyalternativesplicing AT silengolorenzo muscleb1dintegrinreinforcesthecytoskeletonmatrixlinkmodulationofintegrinadhesivefunctionbyalternativesplicing AT fasslerreinhard muscleb1dintegrinreinforcesthecytoskeletonmatrixlinkmodulationofintegrinadhesivefunctionbyalternativesplicing AT kotelianskyvictore muscleb1dintegrinreinforcesthecytoskeletonmatrixlinkmodulationofintegrinadhesivefunctionbyalternativesplicing AT burridgekeith muscleb1dintegrinreinforcesthecytoskeletonmatrixlinkmodulationofintegrinadhesivefunctionbyalternativesplicing AT taroneguido muscleb1dintegrinreinforcesthecytoskeletonmatrixlinkmodulationofintegrinadhesivefunctionbyalternativesplicing |