Cargando…

Three-dimensional Structure of Acanthamoeba castellanii Myosin-IB (MIB) Determined by Cryoelectron Microscopy of Decorated Actin Filaments

The Acanthamoeba castellanii myosin-Is were the first unconventional myosins to be discovered, and the myosin-I class has since been found to be one of the more diverse and abundant classes of the myosin superfamily. We used two-dimensional (2D) crystallization on phospholipid monolayers and negativ...

Descripción completa

Detalles Bibliográficos
Autores principales: Jontes, James D., Ostap, E. Michael, Pollard, Thomas D., Milligan, Ronald A.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1998
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132727/
https://www.ncbi.nlm.nih.gov/pubmed/9531555
Descripción
Sumario:The Acanthamoeba castellanii myosin-Is were the first unconventional myosins to be discovered, and the myosin-I class has since been found to be one of the more diverse and abundant classes of the myosin superfamily. We used two-dimensional (2D) crystallization on phospholipid monolayers and negative stain electron microscopy to calculate a projection map of a “classical” myosin-I, Acanthamoeba myosin-IB (MIB), at ∼18 Å resolution. Interpretation of the projection map suggests that the MIB molecules sit upright on the membrane. We also used cryoelectron microscopy and helical image analysis to determine the three-dimensional structure of actin filaments decorated with unphosphorylated (inactive) MIB. The catalytic domain is similar to that of other myosins, whereas the large carboxy-terminal tail domain differs greatly from brush border myosin-I (BBM-I), another member of the myosin-I class. These differences may be relevant to the distinct cellular functions of these two types of myosin-I. The catalytic domain of MIB also attaches to F-actin at a significantly different angle, ∼10°, than BBM-I. Finally, there is evidence that the tails of adjacent MIB molecules interact in both the 2D crystal and in the decorated actin filaments.