Cargando…

Pan1p, Yeast eps15, Functions as a Multivalent Adaptor That Coordinates Protein–Protein Interactions Essential for Endocytosis

A genetic screen for factors required for endocytosis in the budding yeast Saccharomyces cerevisiae previously identified PAN1. Pan1p is a homologue of the mammalian protein eps15, which has been implicated in endocytosis by virtue of its association with the plasma membrane clathrin adaptor complex...

Descripción completa

Detalles Bibliográficos
Autores principales: Wendland, Beverly, Emr, Scott D.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1998
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132731/
https://www.ncbi.nlm.nih.gov/pubmed/9531549
_version_ 1782142511840493568
author Wendland, Beverly
Emr, Scott D.
author_facet Wendland, Beverly
Emr, Scott D.
author_sort Wendland, Beverly
collection PubMed
description A genetic screen for factors required for endocytosis in the budding yeast Saccharomyces cerevisiae previously identified PAN1. Pan1p is a homologue of the mammalian protein eps15, which has been implicated in endocytosis by virtue of its association with the plasma membrane clathrin adaptor complex AP-2. Pan1p contains two eps15 homology (EH) domains, a protein–protein interaction motif also present in other proteins that function in membrane trafficking. To address the role of Pan1p and EH domains in endocytosis, a yeast two-hybrid screen was performed using the EH domain–containing region of Pan1p. This screen identified yAP180A, one of two yeast homologues of a class of clathrin assembly proteins (AP180) that exhibit in vitro clathrin cage assembly activity. In vitro binding studies using GST fusion proteins and yeast extracts defined distinct binding sites on yAP180A for Pan1p and clathrin. yAP180 proteins and Pan1p, like actin, localize to peripheral patches along the plasma membrane. Mammalian synaptojanin, a phosphatidylinositol polyphosphate-5-phosphatase, also has been implicated in endocytosis recently, and three synaptojanin-like genes have been identified in yeast. We observed genetic interactions between the yeast SJL1 gene and PAN1, which suggest a role for phosphoinositide metabolites in Pan1p function. Together with other studies, these findings suggest that Pan1p coordinates regulatory interactions between proteins required for both endocytosis and actin-cytoskeleton organization; these proteins include the yAP180 proteins, clathrin, the ubiquitin–protein ligase Rsp5p, End3p, and synaptojanin. We suggest that Pan1p (and by extension eps15) serves as a multivalent adaptor around which dynamic interactions between structural and regulatory components of the endocytic pathway converge.
format Text
id pubmed-2132731
institution National Center for Biotechnology Information
language English
publishDate 1998
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21327312008-05-01 Pan1p, Yeast eps15, Functions as a Multivalent Adaptor That Coordinates Protein–Protein Interactions Essential for Endocytosis Wendland, Beverly Emr, Scott D. J Cell Biol Regular Articles A genetic screen for factors required for endocytosis in the budding yeast Saccharomyces cerevisiae previously identified PAN1. Pan1p is a homologue of the mammalian protein eps15, which has been implicated in endocytosis by virtue of its association with the plasma membrane clathrin adaptor complex AP-2. Pan1p contains two eps15 homology (EH) domains, a protein–protein interaction motif also present in other proteins that function in membrane trafficking. To address the role of Pan1p and EH domains in endocytosis, a yeast two-hybrid screen was performed using the EH domain–containing region of Pan1p. This screen identified yAP180A, one of two yeast homologues of a class of clathrin assembly proteins (AP180) that exhibit in vitro clathrin cage assembly activity. In vitro binding studies using GST fusion proteins and yeast extracts defined distinct binding sites on yAP180A for Pan1p and clathrin. yAP180 proteins and Pan1p, like actin, localize to peripheral patches along the plasma membrane. Mammalian synaptojanin, a phosphatidylinositol polyphosphate-5-phosphatase, also has been implicated in endocytosis recently, and three synaptojanin-like genes have been identified in yeast. We observed genetic interactions between the yeast SJL1 gene and PAN1, which suggest a role for phosphoinositide metabolites in Pan1p function. Together with other studies, these findings suggest that Pan1p coordinates regulatory interactions between proteins required for both endocytosis and actin-cytoskeleton organization; these proteins include the yAP180 proteins, clathrin, the ubiquitin–protein ligase Rsp5p, End3p, and synaptojanin. We suggest that Pan1p (and by extension eps15) serves as a multivalent adaptor around which dynamic interactions between structural and regulatory components of the endocytic pathway converge. The Rockefeller University Press 1998-04-06 /pmc/articles/PMC2132731/ /pubmed/9531549 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Regular Articles
Wendland, Beverly
Emr, Scott D.
Pan1p, Yeast eps15, Functions as a Multivalent Adaptor That Coordinates Protein–Protein Interactions Essential for Endocytosis
title Pan1p, Yeast eps15, Functions as a Multivalent Adaptor That Coordinates Protein–Protein Interactions Essential for Endocytosis
title_full Pan1p, Yeast eps15, Functions as a Multivalent Adaptor That Coordinates Protein–Protein Interactions Essential for Endocytosis
title_fullStr Pan1p, Yeast eps15, Functions as a Multivalent Adaptor That Coordinates Protein–Protein Interactions Essential for Endocytosis
title_full_unstemmed Pan1p, Yeast eps15, Functions as a Multivalent Adaptor That Coordinates Protein–Protein Interactions Essential for Endocytosis
title_short Pan1p, Yeast eps15, Functions as a Multivalent Adaptor That Coordinates Protein–Protein Interactions Essential for Endocytosis
title_sort pan1p, yeast eps15, functions as a multivalent adaptor that coordinates protein–protein interactions essential for endocytosis
topic Regular Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132731/
https://www.ncbi.nlm.nih.gov/pubmed/9531549
work_keys_str_mv AT wendlandbeverly pan1pyeasteps15functionsasamultivalentadaptorthatcoordinatesproteinproteininteractionsessentialforendocytosis
AT emrscottd pan1pyeasteps15functionsasamultivalentadaptorthatcoordinatesproteinproteininteractionsessentialforendocytosis