Cargando…
Regulation Mechanism of the Lateral Diffusion of Band 3 in Erythrocyte Membranes by the Membrane Skeleton
Mechanisms that regulate the movement of a membrane spanning protein band 3 in erythrocyte ghosts were investigated at the level of a single or small groups of molecules using single particle tracking with an enhanced time resolution (0.22 ms). Two-thirds of band 3 undergo macroscopic diffusion: a b...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1998
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132872/ https://www.ncbi.nlm.nih.gov/pubmed/9722611 |
Sumario: | Mechanisms that regulate the movement of a membrane spanning protein band 3 in erythrocyte ghosts were investigated at the level of a single or small groups of molecules using single particle tracking with an enhanced time resolution (0.22 ms). Two-thirds of band 3 undergo macroscopic diffusion: a band 3 molecule is temporarily corralled in a mesh of 110 nm in diameter, and hops to an adjacent mesh an average of every 350 ms. The rest (one-third) of band 3 exhibited oscillatory motion similar to that of spectrin, suggesting that these band 3 molecules are bound to spectrin. When the membrane skeletal network was dragged and deformed/translated using optical tweezers, band 3 molecules that were undergoing hop diffusion were displaced toward the same direction as the skeleton. Mild trypsin treatment of ghosts, which cleaves off the cytoplasmic portion of band 3 without affecting spectrin, actin, and protein 4.1, increased the intercompartmental hop rate of band 3 by a factor of 6, whereas it did not change the corral size and the microscopic diffusion rate within a corral. These results indicate that the cytoplasmic portion of band 3 collides with the membrane skeleton, which causes temporal confinement of band 3 inside a mesh of the membrane skeleton. |
---|