Cargando…

Evidence That Atypical Protein Kinase C-λ and Atypical Protein Kinase C-ζ Participate in Ras-mediated Reorganization of the F-actin Cytoskeleton

Expression of transforming Ha-Ras L61 in NIH3T3 cells causes profound morphological alterations which include a disassembly of actin stress fibers. The Ras-induced dissolution of actin stress fibers is blocked by the specific PKC inhibitor GF109203X at concentrations which inhibit the activity of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Überall, Florian, Hellbert, Karina, Kampfer, Sonja, Maly, Karl, Villunger, Andreas, Spitaler, Martin, Mwanjewe, James, Baier-Bitterlich, Gabriele, Baier, Gottfried, Grunicke, Hans H.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1999
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132909/
https://www.ncbi.nlm.nih.gov/pubmed/9971737
Descripción
Sumario:Expression of transforming Ha-Ras L61 in NIH3T3 cells causes profound morphological alterations which include a disassembly of actin stress fibers. The Ras-induced dissolution of actin stress fibers is blocked by the specific PKC inhibitor GF109203X at concentrations which inhibit the activity of the atypical aPKC isotypes λ and ζ, whereas lower concentrations of the inhibitor which block conventional and novel PKC isotypes are ineffective. Coexpression of transforming Ha-Ras L61 with kinase-defective, dominant-negative (DN) mutants of aPKC-λ and aPKC-ζ, as well as antisense constructs encoding RNA-directed against isotype-specific 5′ sequences of the corresponding mRNA, abrogates the Ha-Ras–induced reorganization of the actin cytoskeleton. Expression of a kinase-defective, DN mutant of cPKC-α was unable to counteract Ras with regard to the dissolution of actin stress fibers. Transfection of cells with constructs encoding constitutively active (CA) mutants of atypical aPKC-λ and aPKC-ζ lead to a disassembly of stress fibers independent of oncogenic Ha-Ras. Coexpression of (DN) Rac-1 N17 and addition of the phosphatidylinositol 3′-kinase (PI3K) inhibitors wortmannin and LY294002 are in agreement with a tentative model suggesting that, in the signaling pathway from Ha-Ras to the cytoskeleton aPKC-λ acts upstream of PI3K and Rac-1, whereas aPKC-ζ functions downstream of PI3K and Rac-1. This model is supported by studies demonstrating that cotransfection with plasmids encoding L61Ras and either aPKC-λ or aPKC-ζ results in a stimulation of the kinase activity of both enzymes. Furthermore, the Ras-mediated activation of PKC-ζ was abrogated by coexpression of DN Rac-1 N17.