Cargando…
When Overexpressed, a Novel Centrosomal Protein, RanBPM, Causes Ectopic Microtubule Nucleation Similar to γ-Tubulin
A novel human protein with a molecular mass of 55 kD, designated RanBPM, was isolated with the two-hybrid method using Ran as a bait. Mouse and hamster RanBPM possessed a polypeptide identical to the human one. Furthermore, Saccharomyces cerevisiae was found to have a gene, YGL227w, the COOH-termina...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1998
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132962/ https://www.ncbi.nlm.nih.gov/pubmed/9817760 |
Sumario: | A novel human protein with a molecular mass of 55 kD, designated RanBPM, was isolated with the two-hybrid method using Ran as a bait. Mouse and hamster RanBPM possessed a polypeptide identical to the human one. Furthermore, Saccharomyces cerevisiae was found to have a gene, YGL227w, the COOH-terminal half of which is 30% identical to RanBPM. Anti-RanBPM antibodies revealed that RanBPM was localized within the centrosome throughout the cell cycle. Overexpression of RanBPM produced multiple spots which were colocalized with γ-tubulin and acted as ectopic microtubule nucleation sites, resulting in a reorganization of microtubule network. RanBPM cosedimented with the centrosomal fractions by sucrose- density gradient centrifugation. The formation of microtubule asters was inhibited not only by anti- RanBPM antibodies, but also by nonhydrolyzable GTP-Ran. Indeed, RanBPM specifically interacted with GTP-Ran in two-hybrid assay. The central part of asters stained by anti-RanBPM antibodies or by the mAb to γ-tubulin was faded by the addition of GTPγS-Ran, but not by the addition of anti-RanBPM anti- bodies. These results provide evidence that the Ran-binding protein, RanBPM, is involved in microtubule nucleation, thereby suggesting that Ran regulates the centrosome through RanBPM. |
---|