Cargando…
Claudin-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to Occludin
Occludin is the only known integral membrane protein localizing at tight junctions (TJ), but recent targeted disruption analysis of the occludin gene indicated the existence of as yet unidentified integral membrane proteins in TJ. We therefore re-examined the isolated junction fraction from chicken...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1998
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132999/ https://www.ncbi.nlm.nih.gov/pubmed/9647647 |
_version_ | 1782142571454136320 |
---|---|
author | Furuse, Mikio Fujita, Kohji Hiiragi, Takashi Fujimoto, Kazushi Tsukita, Shoichiro |
author_facet | Furuse, Mikio Fujita, Kohji Hiiragi, Takashi Fujimoto, Kazushi Tsukita, Shoichiro |
author_sort | Furuse, Mikio |
collection | PubMed |
description | Occludin is the only known integral membrane protein localizing at tight junctions (TJ), but recent targeted disruption analysis of the occludin gene indicated the existence of as yet unidentified integral membrane proteins in TJ. We therefore re-examined the isolated junction fraction from chicken liver, from which occludin was first identified. Among numerous components of this fraction, only a broad silver-stained band ∼22 kD was detected with the occludin band through 4 M guanidine-HCl extraction as well as sonication followed by stepwise sucrose density gradient centrifugation. Two distinct peptide sequences were obtained from the lower and upper halves of the broad band, and similarity searches of databases allowed us to isolate two full-length cDNAs encoding related mouse 22-kD proteins consisting of 211 and 230 amino acids, respectively. Hydrophilicity analysis suggested that both bore four transmembrane domains, although they did not show any sequence similarity to occludin. Immunofluorescence and immunoelectron microscopy revealed that both proteins tagged with FLAG or GFP were targeted to and incorporated into the TJ strand itself. We designated them as “claudin-1” and “claudin-2”, respectively. Although the precise structure/function relationship of the claudins to TJ still remains elusive, these findings indicated that multiple integral membrane proteins with four putative transmembrane domains, occludin and claudins, constitute TJ strands. |
format | Text |
id | pubmed-2132999 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1998 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21329992008-05-01 Claudin-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to Occludin Furuse, Mikio Fujita, Kohji Hiiragi, Takashi Fujimoto, Kazushi Tsukita, Shoichiro J Cell Biol Articles Occludin is the only known integral membrane protein localizing at tight junctions (TJ), but recent targeted disruption analysis of the occludin gene indicated the existence of as yet unidentified integral membrane proteins in TJ. We therefore re-examined the isolated junction fraction from chicken liver, from which occludin was first identified. Among numerous components of this fraction, only a broad silver-stained band ∼22 kD was detected with the occludin band through 4 M guanidine-HCl extraction as well as sonication followed by stepwise sucrose density gradient centrifugation. Two distinct peptide sequences were obtained from the lower and upper halves of the broad band, and similarity searches of databases allowed us to isolate two full-length cDNAs encoding related mouse 22-kD proteins consisting of 211 and 230 amino acids, respectively. Hydrophilicity analysis suggested that both bore four transmembrane domains, although they did not show any sequence similarity to occludin. Immunofluorescence and immunoelectron microscopy revealed that both proteins tagged with FLAG or GFP were targeted to and incorporated into the TJ strand itself. We designated them as “claudin-1” and “claudin-2”, respectively. Although the precise structure/function relationship of the claudins to TJ still remains elusive, these findings indicated that multiple integral membrane proteins with four putative transmembrane domains, occludin and claudins, constitute TJ strands. The Rockefeller University Press 1998-06-29 /pmc/articles/PMC2132999/ /pubmed/9647647 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Furuse, Mikio Fujita, Kohji Hiiragi, Takashi Fujimoto, Kazushi Tsukita, Shoichiro Claudin-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to Occludin |
title | Claudin-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to Occludin |
title_full | Claudin-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to Occludin |
title_fullStr | Claudin-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to Occludin |
title_full_unstemmed | Claudin-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to Occludin |
title_short | Claudin-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to Occludin |
title_sort | claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132999/ https://www.ncbi.nlm.nih.gov/pubmed/9647647 |
work_keys_str_mv | AT furusemikio claudin1and2novelintegralmembraneproteinslocalizingattightjunctionswithnosequencesimilaritytooccludin AT fujitakohji claudin1and2novelintegralmembraneproteinslocalizingattightjunctionswithnosequencesimilaritytooccludin AT hiiragitakashi claudin1and2novelintegralmembraneproteinslocalizingattightjunctionswithnosequencesimilaritytooccludin AT fujimotokazushi claudin1and2novelintegralmembraneproteinslocalizingattightjunctionswithnosequencesimilaritytooccludin AT tsukitashoichiro claudin1and2novelintegralmembraneproteinslocalizingattightjunctionswithnosequencesimilaritytooccludin |