Cargando…

ADP-Ribosylation Factor 1 (ARF1) Regulates Recruitment of the AP-3 Adaptor Complex to Membranes

Small GTP-binding proteins such as ADP- ribosylation factor 1 (ARF1) and Sar1p regulate the membrane association of coat proteins involved in intracellular membrane trafficking. ARF1 controls the clathrin coat adaptor AP-1 and the nonclathrin coat COPI, whereas Sar1p controls the nonclathrin coat CO...

Descripción completa

Detalles Bibliográficos
Autores principales: Ooi, Chean Eng, Dell'Angelica, Esteban C., Bonifacino, Juan S.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1998
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2133064/
https://www.ncbi.nlm.nih.gov/pubmed/9679139
Descripción
Sumario:Small GTP-binding proteins such as ADP- ribosylation factor 1 (ARF1) and Sar1p regulate the membrane association of coat proteins involved in intracellular membrane trafficking. ARF1 controls the clathrin coat adaptor AP-1 and the nonclathrin coat COPI, whereas Sar1p controls the nonclathrin coat COPII. In this study, we demonstrate that membrane association of the recently described AP-3 adaptor is regulated by ARF1. Association of AP-3 with membranes in vitro was enhanced by GTPγS and inhibited by brefeldin A (BFA), an inhibitor of ARF1 guanine nucleotide exchange. In addition, recombinant myristoylated ARF1 promoted association of AP-3 with membranes. The role of ARF1 in vivo was examined by assessing AP-3 subcellular localization when the intracellular level of ARF1-GTP was altered through overexpression of dominant ARF1 mutants or ARF1- GTPase-activating protein (GAP). Lowering ARF1-GTP levels resulted in redistribution of AP-3 from punctate membrane-bound structures to the cytosol as seen by immunofluorescence microscopy. In contrast, increasing ARF1-GTP levels prevented redistribution of AP-3 to the cytosol induced by BFA or energy depletion. Similar experiments with mutants of ARF5 and ARF6 showed that these other ARF family members had little or no effect on AP-3. Taken together, our results indicate that membrane recruitment of AP-3 is promoted by ARF1-GTP. This finding suggests that ARF1 is not a regulator of specific coat proteins, but rather is a ubiquitous molecular switch that acts as a transducer of diverse signals influencing coat assembly.