Cargando…

Changes in the Balance of Phosphoinositide 3-Kinase/Protein Kinase B (Akt) and the Mitogen-activated Protein Kinases (ERK/p38MAPK) Determine a Phenotype of Visceral and Vascular Smooth Muscle Cells

The molecular mechanisms behind phenotypic modulation of smooth muscle cells (SMCs) remain unclear. In our recent paper, we reported the establishment of novel culture system of gizzard SMCs (Hayashi, K., H. Saga, Y. Chimori, K. Kimura, Y. Yamanaka, and K. Sobue. 1998. J. Biol. Chem. 273: 28860–2886...

Descripción completa

Detalles Bibliográficos
Autores principales: Hayashi, Ken'ichiro, Takahashi, Masanori, Kimura, Kazuhiro, Nishida, Wataru, Saga, Hiroshi, Sobue, Kenji
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1999
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2133182/
https://www.ncbi.nlm.nih.gov/pubmed/10330402
_version_ 1782142612165099520
author Hayashi, Ken'ichiro
Takahashi, Masanori
Kimura, Kazuhiro
Nishida, Wataru
Saga, Hiroshi
Sobue, Kenji
author_facet Hayashi, Ken'ichiro
Takahashi, Masanori
Kimura, Kazuhiro
Nishida, Wataru
Saga, Hiroshi
Sobue, Kenji
author_sort Hayashi, Ken'ichiro
collection PubMed
description The molecular mechanisms behind phenotypic modulation of smooth muscle cells (SMCs) remain unclear. In our recent paper, we reported the establishment of novel culture system of gizzard SMCs (Hayashi, K., H. Saga, Y. Chimori, K. Kimura, Y. Yamanaka, and K. Sobue. 1998. J. Biol. Chem. 273: 28860–28867), in which insulin-like growth factor-I (IGF-I) was the most potent for maintaining the differentiated SMC phenotype, and IGF-I triggered the phosphoinositide 3-kinase (PI3-K) and protein kinase B (PKB(Akt)) pathway. Here, we investigated the signaling pathways involved in de-differentiation of gizzard SMCs induced by PDGF-BB, bFGF, and EGF. In contrast to the IGF-I–triggered pathway, PDGF-BB, bFGF, and EGF coordinately activated ERK and p38MAPK pathways. Further, the forced expression of active forms of MEK1 and MKK6, which are the upstream kinases of ERK and p38MAPK, respectively, induced de-differentiation even when SMCs were stimulated with IGF-I. Among three growth factors, PDGF-BB only triggered the PI3-K/PKB(Akt) pathway in addition to the ERK and p38MAPK pathways. When the ERK and p38MAPK pathways were simultaneously blocked by their specific inhibitors or an active form of either PI3-K or PKB(Akt) was transfected, PDGF-BB in turn initiated to maintain the differentiated SMC phenotype. We applied these findings to vascular SMCs, and demonstrated the possibility that the same signaling pathways might be involved in regulating the vascular SMC phenotype. These results suggest that changes in the balance between the PI3-K/PKB(Akt) pathway and the ERK and p38MAPK pathways would determine phenotypes of visceral and vascular SMCs. We further reported that SMCs cotransfected with active forms of MEK1 and MKK6 secreted a nondialyzable, heat-labile protein factor(s) which induced de-differentiation of surrounding normal SMCs.
format Text
id pubmed-2133182
institution National Center for Biotechnology Information
language English
publishDate 1999
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21331822008-05-01 Changes in the Balance of Phosphoinositide 3-Kinase/Protein Kinase B (Akt) and the Mitogen-activated Protein Kinases (ERK/p38MAPK) Determine a Phenotype of Visceral and Vascular Smooth Muscle Cells Hayashi, Ken'ichiro Takahashi, Masanori Kimura, Kazuhiro Nishida, Wataru Saga, Hiroshi Sobue, Kenji J Cell Biol Regular Articles The molecular mechanisms behind phenotypic modulation of smooth muscle cells (SMCs) remain unclear. In our recent paper, we reported the establishment of novel culture system of gizzard SMCs (Hayashi, K., H. Saga, Y. Chimori, K. Kimura, Y. Yamanaka, and K. Sobue. 1998. J. Biol. Chem. 273: 28860–28867), in which insulin-like growth factor-I (IGF-I) was the most potent for maintaining the differentiated SMC phenotype, and IGF-I triggered the phosphoinositide 3-kinase (PI3-K) and protein kinase B (PKB(Akt)) pathway. Here, we investigated the signaling pathways involved in de-differentiation of gizzard SMCs induced by PDGF-BB, bFGF, and EGF. In contrast to the IGF-I–triggered pathway, PDGF-BB, bFGF, and EGF coordinately activated ERK and p38MAPK pathways. Further, the forced expression of active forms of MEK1 and MKK6, which are the upstream kinases of ERK and p38MAPK, respectively, induced de-differentiation even when SMCs were stimulated with IGF-I. Among three growth factors, PDGF-BB only triggered the PI3-K/PKB(Akt) pathway in addition to the ERK and p38MAPK pathways. When the ERK and p38MAPK pathways were simultaneously blocked by their specific inhibitors or an active form of either PI3-K or PKB(Akt) was transfected, PDGF-BB in turn initiated to maintain the differentiated SMC phenotype. We applied these findings to vascular SMCs, and demonstrated the possibility that the same signaling pathways might be involved in regulating the vascular SMC phenotype. These results suggest that changes in the balance between the PI3-K/PKB(Akt) pathway and the ERK and p38MAPK pathways would determine phenotypes of visceral and vascular SMCs. We further reported that SMCs cotransfected with active forms of MEK1 and MKK6 secreted a nondialyzable, heat-labile protein factor(s) which induced de-differentiation of surrounding normal SMCs. The Rockefeller University Press 1999-05-17 /pmc/articles/PMC2133182/ /pubmed/10330402 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Regular Articles
Hayashi, Ken'ichiro
Takahashi, Masanori
Kimura, Kazuhiro
Nishida, Wataru
Saga, Hiroshi
Sobue, Kenji
Changes in the Balance of Phosphoinositide 3-Kinase/Protein Kinase B (Akt) and the Mitogen-activated Protein Kinases (ERK/p38MAPK) Determine a Phenotype of Visceral and Vascular Smooth Muscle Cells
title Changes in the Balance of Phosphoinositide 3-Kinase/Protein Kinase B (Akt) and the Mitogen-activated Protein Kinases (ERK/p38MAPK) Determine a Phenotype of Visceral and Vascular Smooth Muscle Cells
title_full Changes in the Balance of Phosphoinositide 3-Kinase/Protein Kinase B (Akt) and the Mitogen-activated Protein Kinases (ERK/p38MAPK) Determine a Phenotype of Visceral and Vascular Smooth Muscle Cells
title_fullStr Changes in the Balance of Phosphoinositide 3-Kinase/Protein Kinase B (Akt) and the Mitogen-activated Protein Kinases (ERK/p38MAPK) Determine a Phenotype of Visceral and Vascular Smooth Muscle Cells
title_full_unstemmed Changes in the Balance of Phosphoinositide 3-Kinase/Protein Kinase B (Akt) and the Mitogen-activated Protein Kinases (ERK/p38MAPK) Determine a Phenotype of Visceral and Vascular Smooth Muscle Cells
title_short Changes in the Balance of Phosphoinositide 3-Kinase/Protein Kinase B (Akt) and the Mitogen-activated Protein Kinases (ERK/p38MAPK) Determine a Phenotype of Visceral and Vascular Smooth Muscle Cells
title_sort changes in the balance of phosphoinositide 3-kinase/protein kinase b (akt) and the mitogen-activated protein kinases (erk/p38mapk) determine a phenotype of visceral and vascular smooth muscle cells
topic Regular Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2133182/
https://www.ncbi.nlm.nih.gov/pubmed/10330402
work_keys_str_mv AT hayashikenichiro changesinthebalanceofphosphoinositide3kinaseproteinkinasebaktandthemitogenactivatedproteinkinaseserkp38mapkdetermineaphenotypeofvisceralandvascularsmoothmusclecells
AT takahashimasanori changesinthebalanceofphosphoinositide3kinaseproteinkinasebaktandthemitogenactivatedproteinkinaseserkp38mapkdetermineaphenotypeofvisceralandvascularsmoothmusclecells
AT kimurakazuhiro changesinthebalanceofphosphoinositide3kinaseproteinkinasebaktandthemitogenactivatedproteinkinaseserkp38mapkdetermineaphenotypeofvisceralandvascularsmoothmusclecells
AT nishidawataru changesinthebalanceofphosphoinositide3kinaseproteinkinasebaktandthemitogenactivatedproteinkinaseserkp38mapkdetermineaphenotypeofvisceralandvascularsmoothmusclecells
AT sagahiroshi changesinthebalanceofphosphoinositide3kinaseproteinkinasebaktandthemitogenactivatedproteinkinaseserkp38mapkdetermineaphenotypeofvisceralandvascularsmoothmusclecells
AT sobuekenji changesinthebalanceofphosphoinositide3kinaseproteinkinasebaktandthemitogenactivatedproteinkinaseserkp38mapkdetermineaphenotypeofvisceralandvascularsmoothmusclecells