Cargando…
Self-Regulation of Candida albicans Population Size during GI Colonization
Interactions between colonizing commensal microorganisms and their hosts play important roles in health and disease. The opportunistic fungal pathogen Candida albicans is a common component of human intestinal flora. To gain insight into C. albicans colonization, genes expressed by fungi grown withi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2134954/ https://www.ncbi.nlm.nih.gov/pubmed/18069889 http://dx.doi.org/10.1371/journal.ppat.0030184 |
_version_ | 1782142787062333440 |
---|---|
author | White, Sarah Jane Rosenbach, Ari Lephart, Paul Nguyen, Diem Benjamin, Alana Tzipori, Saul Whiteway, Malcolm Mecsas, Joan Kumamoto, Carol A |
author_facet | White, Sarah Jane Rosenbach, Ari Lephart, Paul Nguyen, Diem Benjamin, Alana Tzipori, Saul Whiteway, Malcolm Mecsas, Joan Kumamoto, Carol A |
author_sort | White, Sarah Jane |
collection | PubMed |
description | Interactions between colonizing commensal microorganisms and their hosts play important roles in health and disease. The opportunistic fungal pathogen Candida albicans is a common component of human intestinal flora. To gain insight into C. albicans colonization, genes expressed by fungi grown within a host were studied. The EFH1 gene, encoding a putative transcription factor, was highly expressed during growth of C. albicans in the intestinal tract. Counterintuitively, an efh1 null mutant exhibited increased colonization of the murine intestinal tract, a model of commensal colonization, whereas an EFH1 overexpressing strain exhibited reduced colonization of the intestinal tract and of the oral cavity of athymic mice, the latter situation modeling human mucosal candidiasis. When inoculated into the bloodstream of mice, both efh1 null and EFH1 overexpressing strains caused lethal infections. In contrast, other mutants are attenuated in virulence following intravenous inoculation but exhibited normal levels of intestinal colonization. Finally, although expression of several genes is dependent on transcription factor Efg1p during laboratory growth, Efg1p-independent expression of these genes was observed during growth within the murine intestinal tract. These results show that expression of EFH1 regulated the level of colonizing fungi, favoring commensalism as opposed to candidiasis. Also, different genes are required in different host niches and the pathway(s) that regulates gene expression during host colonization can differ from well-characterized pathways used during laboratory growth. |
format | Text |
id | pubmed-2134954 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-21349542007-12-27 Self-Regulation of Candida albicans Population Size during GI Colonization White, Sarah Jane Rosenbach, Ari Lephart, Paul Nguyen, Diem Benjamin, Alana Tzipori, Saul Whiteway, Malcolm Mecsas, Joan Kumamoto, Carol A PLoS Pathog Research Article Interactions between colonizing commensal microorganisms and their hosts play important roles in health and disease. The opportunistic fungal pathogen Candida albicans is a common component of human intestinal flora. To gain insight into C. albicans colonization, genes expressed by fungi grown within a host were studied. The EFH1 gene, encoding a putative transcription factor, was highly expressed during growth of C. albicans in the intestinal tract. Counterintuitively, an efh1 null mutant exhibited increased colonization of the murine intestinal tract, a model of commensal colonization, whereas an EFH1 overexpressing strain exhibited reduced colonization of the intestinal tract and of the oral cavity of athymic mice, the latter situation modeling human mucosal candidiasis. When inoculated into the bloodstream of mice, both efh1 null and EFH1 overexpressing strains caused lethal infections. In contrast, other mutants are attenuated in virulence following intravenous inoculation but exhibited normal levels of intestinal colonization. Finally, although expression of several genes is dependent on transcription factor Efg1p during laboratory growth, Efg1p-independent expression of these genes was observed during growth within the murine intestinal tract. These results show that expression of EFH1 regulated the level of colonizing fungi, favoring commensalism as opposed to candidiasis. Also, different genes are required in different host niches and the pathway(s) that regulates gene expression during host colonization can differ from well-characterized pathways used during laboratory growth. Public Library of Science 2007-12 2007-12-07 /pmc/articles/PMC2134954/ /pubmed/18069889 http://dx.doi.org/10.1371/journal.ppat.0030184 Text en © 2007 White et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article White, Sarah Jane Rosenbach, Ari Lephart, Paul Nguyen, Diem Benjamin, Alana Tzipori, Saul Whiteway, Malcolm Mecsas, Joan Kumamoto, Carol A Self-Regulation of Candida albicans Population Size during GI Colonization |
title | Self-Regulation of Candida albicans Population Size during GI Colonization |
title_full | Self-Regulation of Candida albicans Population Size during GI Colonization |
title_fullStr | Self-Regulation of Candida albicans Population Size during GI Colonization |
title_full_unstemmed | Self-Regulation of Candida albicans Population Size during GI Colonization |
title_short | Self-Regulation of Candida albicans Population Size during GI Colonization |
title_sort | self-regulation of candida albicans population size during gi colonization |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2134954/ https://www.ncbi.nlm.nih.gov/pubmed/18069889 http://dx.doi.org/10.1371/journal.ppat.0030184 |
work_keys_str_mv | AT whitesarahjane selfregulationofcandidaalbicanspopulationsizeduringgicolonization AT rosenbachari selfregulationofcandidaalbicanspopulationsizeduringgicolonization AT lephartpaul selfregulationofcandidaalbicanspopulationsizeduringgicolonization AT nguyendiem selfregulationofcandidaalbicanspopulationsizeduringgicolonization AT benjaminalana selfregulationofcandidaalbicanspopulationsizeduringgicolonization AT tziporisaul selfregulationofcandidaalbicanspopulationsizeduringgicolonization AT whitewaymalcolm selfregulationofcandidaalbicanspopulationsizeduringgicolonization AT mecsasjoan selfregulationofcandidaalbicanspopulationsizeduringgicolonization AT kumamotocarola selfregulationofcandidaalbicanspopulationsizeduringgicolonization |