Cargando…

MORPHOLOGICAL AND QUANTITATIVE COMPARISON BETWEEN INFECTIOUS AND NON-INFECTIOUS FORMS OF INFLUENZA VIRUS

Electron microscopic study has revealed the morphological entity responsible for the rise in viral hemagglutinin observed in brains of mice after intracerebral inoculation of non-neurotropic strains of influenza virus. This rise in hemagglutinin, although dependent on inoculation of fully infectious...

Descripción completa

Detalles Bibliográficos
Autores principales: Werner, Georges H., Schlesinger, R. Walter
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1954
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2136367/
https://www.ncbi.nlm.nih.gov/pubmed/13286424
_version_ 1782143110695878656
author Werner, Georges H.
Schlesinger, R. Walter
author_facet Werner, Georges H.
Schlesinger, R. Walter
author_sort Werner, Georges H.
collection PubMed
description Electron microscopic study has revealed the morphological entity responsible for the rise in viral hemagglutinin observed in brains of mice after intracerebral inoculation of non-neurotropic strains of influenza virus. This rise in hemagglutinin, although dependent on inoculation of fully infectious virus, is not associated with an increase in infectious titer. The hemagglutinating principle is functionally similar to the "incomplete" influenza virus which can be obtained from chick embryos by serial egg-to-egg transfer of undiluted, infected allantoic fluid according to the method of von Magnus. A method has been described which facilitates selective adsorption of viral particles recovered from organ extracts on saponine-lysed ghosts of fowl erythrocytes. This procedure has been utilized in studying the morphology of non-infectious, hemagglutinating virus from chorio-allantoic membranes or mouse brains and in comparing these two forms with each other and with ordinary, infectious (standard) influenza virus. Standard virus isolated from allantoic fluids or membranes of infected eggs was found to contain uniform particles of predominantly spherical shape with smooth surface and even density, resembling those described by others. The appearance of such particles was not affected by the procedure of extraction and concentration used. In contrast, non-infectious, hemagglutinating virus obtained either from allantoic sacs ("undiluted passages") or from mouse brain was pleomorphic and seemed to consist of disintegrating particles. The majority appeared flattened and bag-like and had a rough, granular surface and reduced, uneven density. 37 per cent of the non-infectious particles isolated from mouse brain infected with the non-neurotropic strain WS had diameters in excess of 170 mµ, as compared with only 2 per cent of the particles of the parent strain itself. Regardless of whether or not the contrast in appearance of standard and of non-infectious particles was due to differing resistance to the preparatory treatment, it indicated the existence of basic structural differences between the two types of virus. Correlation of particle counts with hemagglutinin titers has shown that the non-infectious virus obtained from mouse brain is, unit for unit, an equivalent counterpart of standard virus derived from infected eggs. The end-point of hemagglutination in a pattern test corresponds for both forms to that dilution at which the ratio virus particles/red cells approaches one. The quantitative data based on particle counts support the assumption that non-infectious virus arises in mouse brain as a product of viral multiplication.
format Text
id pubmed-2136367
institution National Center for Biotechnology Information
language English
publishDate 1954
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21363672008-04-17 MORPHOLOGICAL AND QUANTITATIVE COMPARISON BETWEEN INFECTIOUS AND NON-INFECTIOUS FORMS OF INFLUENZA VIRUS Werner, Georges H. Schlesinger, R. Walter J Exp Med Article Electron microscopic study has revealed the morphological entity responsible for the rise in viral hemagglutinin observed in brains of mice after intracerebral inoculation of non-neurotropic strains of influenza virus. This rise in hemagglutinin, although dependent on inoculation of fully infectious virus, is not associated with an increase in infectious titer. The hemagglutinating principle is functionally similar to the "incomplete" influenza virus which can be obtained from chick embryos by serial egg-to-egg transfer of undiluted, infected allantoic fluid according to the method of von Magnus. A method has been described which facilitates selective adsorption of viral particles recovered from organ extracts on saponine-lysed ghosts of fowl erythrocytes. This procedure has been utilized in studying the morphology of non-infectious, hemagglutinating virus from chorio-allantoic membranes or mouse brains and in comparing these two forms with each other and with ordinary, infectious (standard) influenza virus. Standard virus isolated from allantoic fluids or membranes of infected eggs was found to contain uniform particles of predominantly spherical shape with smooth surface and even density, resembling those described by others. The appearance of such particles was not affected by the procedure of extraction and concentration used. In contrast, non-infectious, hemagglutinating virus obtained either from allantoic sacs ("undiluted passages") or from mouse brain was pleomorphic and seemed to consist of disintegrating particles. The majority appeared flattened and bag-like and had a rough, granular surface and reduced, uneven density. 37 per cent of the non-infectious particles isolated from mouse brain infected with the non-neurotropic strain WS had diameters in excess of 170 mµ, as compared with only 2 per cent of the particles of the parent strain itself. Regardless of whether or not the contrast in appearance of standard and of non-infectious particles was due to differing resistance to the preparatory treatment, it indicated the existence of basic structural differences between the two types of virus. Correlation of particle counts with hemagglutinin titers has shown that the non-infectious virus obtained from mouse brain is, unit for unit, an equivalent counterpart of standard virus derived from infected eggs. The end-point of hemagglutination in a pattern test corresponds for both forms to that dilution at which the ratio virus particles/red cells approaches one. The quantitative data based on particle counts support the assumption that non-infectious virus arises in mouse brain as a product of viral multiplication. The Rockefeller University Press 1954-08-01 /pmc/articles/PMC2136367/ /pubmed/13286424 Text en Copyright © Copyright, 1954, by The Rockefeller Institute for Medical Research New York This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Werner, Georges H.
Schlesinger, R. Walter
MORPHOLOGICAL AND QUANTITATIVE COMPARISON BETWEEN INFECTIOUS AND NON-INFECTIOUS FORMS OF INFLUENZA VIRUS
title MORPHOLOGICAL AND QUANTITATIVE COMPARISON BETWEEN INFECTIOUS AND NON-INFECTIOUS FORMS OF INFLUENZA VIRUS
title_full MORPHOLOGICAL AND QUANTITATIVE COMPARISON BETWEEN INFECTIOUS AND NON-INFECTIOUS FORMS OF INFLUENZA VIRUS
title_fullStr MORPHOLOGICAL AND QUANTITATIVE COMPARISON BETWEEN INFECTIOUS AND NON-INFECTIOUS FORMS OF INFLUENZA VIRUS
title_full_unstemmed MORPHOLOGICAL AND QUANTITATIVE COMPARISON BETWEEN INFECTIOUS AND NON-INFECTIOUS FORMS OF INFLUENZA VIRUS
title_short MORPHOLOGICAL AND QUANTITATIVE COMPARISON BETWEEN INFECTIOUS AND NON-INFECTIOUS FORMS OF INFLUENZA VIRUS
title_sort morphological and quantitative comparison between infectious and non-infectious forms of influenza virus
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2136367/
https://www.ncbi.nlm.nih.gov/pubmed/13286424
work_keys_str_mv AT wernergeorgesh morphologicalandquantitativecomparisonbetweeninfectiousandnoninfectiousformsofinfluenzavirus
AT schlesingerrwalter morphologicalandquantitativecomparisonbetweeninfectiousandnoninfectiousformsofinfluenzavirus