Cargando…
Human Bcl-2 Reverses Survival Defects in Yeast Lacking Superoxide Dismutase and Delays Death of Wild-Type Yeast
We expressed the human anti-apoptotic protein, Bcl-2, in Saccharomyces cerevisiae to investigate its effects on antioxidant protection and stationary phase survival. Yeast lacking copper-zinc superoxide dismutase (sod1Δ) show a profound defect in entry into and survival during stationary phase even...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1997
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2137818/ https://www.ncbi.nlm.nih.gov/pubmed/9199172 |
Sumario: | We expressed the human anti-apoptotic protein, Bcl-2, in Saccharomyces cerevisiae to investigate its effects on antioxidant protection and stationary phase survival. Yeast lacking copper-zinc superoxide dismutase (sod1Δ) show a profound defect in entry into and survival during stationary phase even under conditions optimal for survival of wild-type strains (incubation in water after stationary phase is reached). Expression of Bcl-2 in the sod1Δ strain caused a large improvement in viability at entry into stationary phase, as well as increased resistance to 100% oxygen and increased catalase activity. In addition, Bcl-2 expression reduced mutation frequency in both wild-type and sod1Δ strains. In another set of experiments, wild-type yeast incubated in expired minimal medium instead of water lost viability quickly; expression of Bcl-2 significantly delayed this stationary phase death. Our results demonstrate that Bcl-2 has activities in yeast that are similar to activities it is known to possess in mammalian cells: (a) stimulation of antioxidant protection and (b) delay of processes leading to cell death. |
---|