Cargando…
The First 35 Amino Acids and Fatty Acylation Sites Determine the Molecular Targeting of Endothelial Nitric Oxide Synthase into the Golgi Region of Cells: A Green Fluorescent Protein Study
Catalytically active endothelial nitric oxide synthase (eNOS) is located on the Golgi complex and in the caveolae of endothelial cells (EC). Mislocalization of eNOS caused by mutation of the N-myristoylation or cysteine palmitoylation sites impairs production of stimulated nitric oxide (NO), suggest...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1997
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2137822/ https://www.ncbi.nlm.nih.gov/pubmed/9199168 |
_version_ | 1782143422079959040 |
---|---|
author | Liu, Jianwei Hughes, Thomas E. Sessa, William C. |
author_facet | Liu, Jianwei Hughes, Thomas E. Sessa, William C. |
author_sort | Liu, Jianwei |
collection | PubMed |
description | Catalytically active endothelial nitric oxide synthase (eNOS) is located on the Golgi complex and in the caveolae of endothelial cells (EC). Mislocalization of eNOS caused by mutation of the N-myristoylation or cysteine palmitoylation sites impairs production of stimulated nitric oxide (NO), suggesting that intracellular targeting is critical for optimal NO production. To investigate the molecular determinants of eNOS targeting in EC, we constructed eNOS–green fluorescent protein (GFP) chimeras to study its localization in living and fixed cells. The full-length eNOS–GFP fusion colocalized with a Golgi marker, mannosidase II, and retained catalytic activity compared to wild-type (WT) eNOS, suggesting that the GFP tag does not interfere with eNOS localization or function. Experiments with different size amino-terminal fusion partners coupled to GFP demonstrated that the first 35 amino acids of eNOS are sufficient to target GFP into the Golgi region of NIH 3T3 cells. Additionally, the unique (Gly-Leu)(5) repeat located between the palmitoylation sites (Cys-15 and -26) of eNOS is necessary for its palmitoylation and thus localization, but not for N-myristoylation, membrane association, and NOS activity. The palmitoylation-deficient mutants displayed a more diffuse fluorescence pattern than did WT eNOS–GFP, but still were associated with intracellular membranes. Biochemical studies also showed that the palmitoylation-deficient mutants are associated with membranes as tightly as WT eNOS. Mutation of the N-myristoylation site Gly-2 (abolishing both N-myristoylation and palmitoylation) caused the GFP fusion protein to distribute throughout the cell as GFP alone, consistent with its primarily cytosolic nature in biochemical studies. Therefore, eNOS targets into the Golgi region of NIH 3T3 cells via the first 35 amino acids, including N-myristoylation and palmitoylation sites, and its overall membrane association requires N-myristoylation but not cysteine palmitoylation. These results suggest a novel role for fatty acylation in the specific compartmentalization of eNOS and most likely, for other dually acylated proteins, to the Golgi complex. |
format | Text |
id | pubmed-2137822 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1997 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21378222008-05-01 The First 35 Amino Acids and Fatty Acylation Sites Determine the Molecular Targeting of Endothelial Nitric Oxide Synthase into the Golgi Region of Cells: A Green Fluorescent Protein Study Liu, Jianwei Hughes, Thomas E. Sessa, William C. J Cell Biol Article Catalytically active endothelial nitric oxide synthase (eNOS) is located on the Golgi complex and in the caveolae of endothelial cells (EC). Mislocalization of eNOS caused by mutation of the N-myristoylation or cysteine palmitoylation sites impairs production of stimulated nitric oxide (NO), suggesting that intracellular targeting is critical for optimal NO production. To investigate the molecular determinants of eNOS targeting in EC, we constructed eNOS–green fluorescent protein (GFP) chimeras to study its localization in living and fixed cells. The full-length eNOS–GFP fusion colocalized with a Golgi marker, mannosidase II, and retained catalytic activity compared to wild-type (WT) eNOS, suggesting that the GFP tag does not interfere with eNOS localization or function. Experiments with different size amino-terminal fusion partners coupled to GFP demonstrated that the first 35 amino acids of eNOS are sufficient to target GFP into the Golgi region of NIH 3T3 cells. Additionally, the unique (Gly-Leu)(5) repeat located between the palmitoylation sites (Cys-15 and -26) of eNOS is necessary for its palmitoylation and thus localization, but not for N-myristoylation, membrane association, and NOS activity. The palmitoylation-deficient mutants displayed a more diffuse fluorescence pattern than did WT eNOS–GFP, but still were associated with intracellular membranes. Biochemical studies also showed that the palmitoylation-deficient mutants are associated with membranes as tightly as WT eNOS. Mutation of the N-myristoylation site Gly-2 (abolishing both N-myristoylation and palmitoylation) caused the GFP fusion protein to distribute throughout the cell as GFP alone, consistent with its primarily cytosolic nature in biochemical studies. Therefore, eNOS targets into the Golgi region of NIH 3T3 cells via the first 35 amino acids, including N-myristoylation and palmitoylation sites, and its overall membrane association requires N-myristoylation but not cysteine palmitoylation. These results suggest a novel role for fatty acylation in the specific compartmentalization of eNOS and most likely, for other dually acylated proteins, to the Golgi complex. The Rockefeller University Press 1997-06-30 /pmc/articles/PMC2137822/ /pubmed/9199168 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Liu, Jianwei Hughes, Thomas E. Sessa, William C. The First 35 Amino Acids and Fatty Acylation Sites Determine the Molecular Targeting of Endothelial Nitric Oxide Synthase into the Golgi Region of Cells: A Green Fluorescent Protein Study |
title | The First 35 Amino Acids and Fatty Acylation Sites Determine
the Molecular Targeting of Endothelial Nitric Oxide Synthase into
the Golgi Region of Cells: A Green Fluorescent Protein Study |
title_full | The First 35 Amino Acids and Fatty Acylation Sites Determine
the Molecular Targeting of Endothelial Nitric Oxide Synthase into
the Golgi Region of Cells: A Green Fluorescent Protein Study |
title_fullStr | The First 35 Amino Acids and Fatty Acylation Sites Determine
the Molecular Targeting of Endothelial Nitric Oxide Synthase into
the Golgi Region of Cells: A Green Fluorescent Protein Study |
title_full_unstemmed | The First 35 Amino Acids and Fatty Acylation Sites Determine
the Molecular Targeting of Endothelial Nitric Oxide Synthase into
the Golgi Region of Cells: A Green Fluorescent Protein Study |
title_short | The First 35 Amino Acids and Fatty Acylation Sites Determine
the Molecular Targeting of Endothelial Nitric Oxide Synthase into
the Golgi Region of Cells: A Green Fluorescent Protein Study |
title_sort | first 35 amino acids and fatty acylation sites determine
the molecular targeting of endothelial nitric oxide synthase into
the golgi region of cells: a green fluorescent protein study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2137822/ https://www.ncbi.nlm.nih.gov/pubmed/9199168 |
work_keys_str_mv | AT liujianwei thefirst35aminoacidsandfattyacylationsitesdeterminethemoleculartargetingofendothelialnitricoxidesynthaseintothegolgiregionofcellsagreenfluorescentproteinstudy AT hughesthomase thefirst35aminoacidsandfattyacylationsitesdeterminethemoleculartargetingofendothelialnitricoxidesynthaseintothegolgiregionofcellsagreenfluorescentproteinstudy AT sessawilliamc thefirst35aminoacidsandfattyacylationsitesdeterminethemoleculartargetingofendothelialnitricoxidesynthaseintothegolgiregionofcellsagreenfluorescentproteinstudy AT liujianwei first35aminoacidsandfattyacylationsitesdeterminethemoleculartargetingofendothelialnitricoxidesynthaseintothegolgiregionofcellsagreenfluorescentproteinstudy AT hughesthomase first35aminoacidsandfattyacylationsitesdeterminethemoleculartargetingofendothelialnitricoxidesynthaseintothegolgiregionofcellsagreenfluorescentproteinstudy AT sessawilliamc first35aminoacidsandfattyacylationsitesdeterminethemoleculartargetingofendothelialnitricoxidesynthaseintothegolgiregionofcellsagreenfluorescentproteinstudy |