Cargando…
The fibrin-derived γ(377-395) peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease
Perivascular microglia activation is a hallmark of inflammatory demyelination in multiple sclerosis (MS), but the mechanisms underlying microglia activation and specific strategies to attenuate their activation remain elusive. Here, we identify fibrinogen as a novel regulator of microglia activation...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2137908/ https://www.ncbi.nlm.nih.gov/pubmed/17339406 http://dx.doi.org/10.1084/jem.20061931 |
Sumario: | Perivascular microglia activation is a hallmark of inflammatory demyelination in multiple sclerosis (MS), but the mechanisms underlying microglia activation and specific strategies to attenuate their activation remain elusive. Here, we identify fibrinogen as a novel regulator of microglia activation and show that targeting of the interaction of fibrinogen with the microglia integrin receptor Mac-1 (α(M)β(2), CD11b/CD18) is sufficient to suppress experimental autoimmune encephalomyelitis in mice that retain full coagulation function. We show that fibrinogen, which is deposited perivascularly in MS plaques, signals through Mac-1 and induces the differentiation of microglia to phagocytes via activation of Akt and Rho. Genetic disruption of fibrinogen–Mac-1 interaction in fibrinogen-γ(390-396A) knock-in mice or pharmacologically impeding fibrinogen–Mac-1 interaction through intranasal delivery of a fibrinogen-derived inhibitory peptide (γ(377-395)) attenuates microglia activation and suppresses relapsing paralysis. Because blocking fibrinogen–Mac-1 interactions affects the proinflammatory but not the procoagulant properties of fibrinogen, targeting the γ(377-395) fibrinogen epitope could represent a potential therapeutic strategy for MS and other neuroinflammatory diseases associated with blood-brain barrier disruption and microglia activation. |
---|