Cargando…

CELL-TO-CELL INTERACTION IN THE IMMUNE RESPONSE : VII. REQUIREMENT FOR DIFFERENTIATION OF THYMUS-DERIVED CELLS

Experiments were designed to test the possibility that thymus-derived (T) cells cooperate with nonthymus derived (B) cells in antibody responses by acting as passive carriers of antigen. Thoracic duct lymphocytes (TDL) from fowl γG-tolerant mice were incubated in vitro with fowl anti-mouse lymphocyt...

Descripción completa

Detalles Bibliográficos
Autores principales: Miller, J. F. A. P., Sprent, J., Basten, A., Warner, N. L., Breitner, J. C. S., Rowland, G., Hamilton, J., Silver, H., Martin, W. J.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1971
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2139017/
https://www.ncbi.nlm.nih.gov/pubmed/5165203
Descripción
Sumario:Experiments were designed to test the possibility that thymus-derived (T) cells cooperate with nonthymus derived (B) cells in antibody responses by acting as passive carriers of antigen. Thoracic duct lymphocytes (TDL) from fowl γG-tolerant mice were incubated in vitro with fowl anti-mouse lymphocyte globulin (FALG), which was shown not to be immunosuppressive in mice. On transfer into adult thymectomized, irradiated, and marrow protected (TxBM) hosts together with a control antigen, horse RBC, a response to horse RBC but not to fowl γG was obtained. By contrast, TxBM recipients of nontolerant, FALG-coated TDL responded to both antigens and the antibody-forming cells were shown to be derived from the host, not from the injected TDL. These findings suggested that, under the conditions of the experiment, triggering of unprimed B cells in the spleens of TxBM hosts was not achieved with antigen-coated tolerant lymphocytes. Another model utilized the ability of B cells to bind antibody-antigen complexes. Spleen cells from TxBM mice, incubated in vitro with anti-fowl γG-fowl γG·NIP, were injected with or without normal TDL (a source of T cells) into irradiated hosts. Only mice given both cell types could produce an anti-NIP antibody response. In a further experiment, spleen cells from HGG·NIP-primed mice were injected together with NIP-coated B cells (prepared as above) into irradiated hosts. A substantial anti-NIP antibody response occurred. If, however, the T cells in the spleens of HGG·NIP-primed mice were eliminated by treatment with anti-θ serum and complement, the NIP response was abolished. It was concluded that antigen-coated B cells could not substitute for T cells either in the primary or secondary response. Treatment of T cells from unprimed or primed mice with mitomycin C impaired their capacity to collaborate with B cells on transfer into irradiated hosts. Taken together these findings suggest that before collaboration can take place T cells must be activated by antigen to differentiate and in so doing may produce some factor essential for triggering of B cells.