Cargando…

MAGNITUDE AND PATTERN OF THYMIC LYMPHOCYTE MIGRATION IN NEONATAL MICE

Neonatal mice were given a subcapsular, intrathymic injection of thymidine-(3)H using a modified microneedle technique, and the migration of labeled cells to spleen, lymph nodes, Peyer's patches, and bone marrow was followed radioautographically with time. Assuming that nonlabeled lymphocytes m...

Descripción completa

Detalles Bibliográficos
Autores principales: Joel, D. D., Hess, M. W., Cottier, H.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1972
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2139145/
https://www.ncbi.nlm.nih.gov/pubmed/5018055
_version_ 1782143727909732352
author Joel, D. D.
Hess, M. W.
Cottier, H.
author_facet Joel, D. D.
Hess, M. W.
Cottier, H.
author_sort Joel, D. D.
collection PubMed
description Neonatal mice were given a subcapsular, intrathymic injection of thymidine-(3)H using a modified microneedle technique, and the migration of labeled cells to spleen, lymph nodes, Peyer's patches, and bone marrow was followed radioautographically with time. Assuming that nonlabeled lymphocytes migrated in the same manner as labeled lymphocytes, it can be concluded that the majority of lymphocytes present within mesenteric lymph nodes (74%) and Peyer's patches (61%), and a large proportion of those located in popliteal lymph nodes (40%) and the spleen (26%), were of thymic origin. Evidence is presented indicating that these are minimum values. The difference in the magnitude of thymic cell migration to gut-associated lymphoid tissue on the one hand and to the spleen and popliteal lymph node on the other hand was tentatively attributed to antigenic stimulation from the intestinal flora which develops during the first days of life. Thymus-derived lymphocytes were scattered throughout the lymph node cortex and splenic follicles. No noticeable thymic cell migration to the bone marrow was found. Labeling indices in the peripheral lymphoid organs paralleled those of cortical thymic lymphocytes suggesting the thymic cortex as the major source of migrants. By 2 days postinjection, the mean grain counts of labeled lymphocytes in all peripheral lymphoid tissues were higher than the mean grain counts of labeled lymphocytes in the thymus. At 7 days postinjection heavily labeled cells constituted 11–16% of the labeled population in peripheral tissues while they were absent from the thymic cortex. These results indicate that a fraction of thymus-derived cells, upon settling in the periphery, remained in, or reentered, a nonproliferative phase for at least 7 days. Conversely, many thymus-derived lymphocytes underwent division in the periphery and/or penetrated the intestinal epithelium. Since the relative number of thymus-derived cells found in the mesenteric lymph nodes of 1- and 2-day old mice was considerably higher than the percentage of cells at this site having the theta (θ) alloantigen, as reported by other authors, the possibility exists that θ-antigen on thymus-derived lymphocytes may, at least in a fraction of these cells, no longer be detectable as they reach the peripheral organs.
format Text
id pubmed-2139145
institution National Center for Biotechnology Information
language English
publishDate 1972
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21391452008-04-17 MAGNITUDE AND PATTERN OF THYMIC LYMPHOCYTE MIGRATION IN NEONATAL MICE Joel, D. D. Hess, M. W. Cottier, H. J Exp Med Article Neonatal mice were given a subcapsular, intrathymic injection of thymidine-(3)H using a modified microneedle technique, and the migration of labeled cells to spleen, lymph nodes, Peyer's patches, and bone marrow was followed radioautographically with time. Assuming that nonlabeled lymphocytes migrated in the same manner as labeled lymphocytes, it can be concluded that the majority of lymphocytes present within mesenteric lymph nodes (74%) and Peyer's patches (61%), and a large proportion of those located in popliteal lymph nodes (40%) and the spleen (26%), were of thymic origin. Evidence is presented indicating that these are minimum values. The difference in the magnitude of thymic cell migration to gut-associated lymphoid tissue on the one hand and to the spleen and popliteal lymph node on the other hand was tentatively attributed to antigenic stimulation from the intestinal flora which develops during the first days of life. Thymus-derived lymphocytes were scattered throughout the lymph node cortex and splenic follicles. No noticeable thymic cell migration to the bone marrow was found. Labeling indices in the peripheral lymphoid organs paralleled those of cortical thymic lymphocytes suggesting the thymic cortex as the major source of migrants. By 2 days postinjection, the mean grain counts of labeled lymphocytes in all peripheral lymphoid tissues were higher than the mean grain counts of labeled lymphocytes in the thymus. At 7 days postinjection heavily labeled cells constituted 11–16% of the labeled population in peripheral tissues while they were absent from the thymic cortex. These results indicate that a fraction of thymus-derived cells, upon settling in the periphery, remained in, or reentered, a nonproliferative phase for at least 7 days. Conversely, many thymus-derived lymphocytes underwent division in the periphery and/or penetrated the intestinal epithelium. Since the relative number of thymus-derived cells found in the mesenteric lymph nodes of 1- and 2-day old mice was considerably higher than the percentage of cells at this site having the theta (θ) alloantigen, as reported by other authors, the possibility exists that θ-antigen on thymus-derived lymphocytes may, at least in a fraction of these cells, no longer be detectable as they reach the peripheral organs. The Rockefeller University Press 1972-03-31 /pmc/articles/PMC2139145/ /pubmed/5018055 Text en Copyright © 1972 by The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Joel, D. D.
Hess, M. W.
Cottier, H.
MAGNITUDE AND PATTERN OF THYMIC LYMPHOCYTE MIGRATION IN NEONATAL MICE
title MAGNITUDE AND PATTERN OF THYMIC LYMPHOCYTE MIGRATION IN NEONATAL MICE
title_full MAGNITUDE AND PATTERN OF THYMIC LYMPHOCYTE MIGRATION IN NEONATAL MICE
title_fullStr MAGNITUDE AND PATTERN OF THYMIC LYMPHOCYTE MIGRATION IN NEONATAL MICE
title_full_unstemmed MAGNITUDE AND PATTERN OF THYMIC LYMPHOCYTE MIGRATION IN NEONATAL MICE
title_short MAGNITUDE AND PATTERN OF THYMIC LYMPHOCYTE MIGRATION IN NEONATAL MICE
title_sort magnitude and pattern of thymic lymphocyte migration in neonatal mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2139145/
https://www.ncbi.nlm.nih.gov/pubmed/5018055
work_keys_str_mv AT joeldd magnitudeandpatternofthymiclymphocytemigrationinneonatalmice
AT hessmw magnitudeandpatternofthymiclymphocytemigrationinneonatalmice
AT cottierh magnitudeandpatternofthymiclymphocytemigrationinneonatalmice