Cargando…
ACTIVATION OF HAGEMAN FACTOR IN SOLID AND FLUID PHASES : A CRITICAL ROLE OF KALLIKREIN
The activation of Hageman factor in solid and fluid phase has been analyzed. Activation of highly purified Hageman factor occurred after it interacted with and became bound to a negatively charged surface. Activation was observed in the absence of enzymes that are inhibitable with diisopropylfluorop...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1973
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2139466/ https://www.ncbi.nlm.nih.gov/pubmed/4271629 |
Sumario: | The activation of Hageman factor in solid and fluid phase has been analyzed. Activation of highly purified Hageman factor occurred after it interacted with and became bound to a negatively charged surface. Activation was observed in the absence of enzymes that are inhibitable with diisopropylfluorophosphate, phenyl methyl sulfonyl fluoride and ε-amino-n-caproic acid. The binding of [(125)I]Hageman factor to the negatively charged surface was markedly inhibited by plasma or purified plasma proteins. Activation of Hageman factor in solution (fluid phase) was obtained with kallikrein, plasmin, and Factor XI (plasma thromboplastin antecedent). Kallikrein was greater than 10 times more active in its ability to activate Hageman factor than plasmin and Factor XI. The data offer a plausible explanation for the finding that highly purified kallikrein promotes clotting of normal plasma. In addition, the combined results of this and previously reported data from this laboratory indicate that the reciprocal activation of Hageman factor by kallikrein in fluid phase is essential for normal rate of activation of the intrinsic-clotting, kinin-forming, and fibrinolytic systems. Activation of Hageman factor was associated with three different structural changes in the molecule: (a) Purified Hageman factor, activated on negatively charged surfaces retained its native mol wt of 80–90,000. Presumably a conformational change accompanied activation. (b) In fluid phase, activation with kallikrein and plasmin did not result in cleavage of large fragments of rabbit Hageman factor, although the activation required hydrolytic capacity of the enzymes. (c) Activation of human Hageman factor with kallikrein or plasmin was associated with cleavage of the molecule to 52,000, 40,000, and 28,000 mol wt fragments. Activation of rabbit Hageman factor with trypsin resulted in cleavage of the molecule into three fragments, each of 30,000 mol wt as noted previously. This major cleavage occurred simultaneously with activation. |
---|