Cargando…

EFFECTOR CELL BLOCKADE : A NEW MECHANISM OF IMMUNE HYPOREACTIVITY INDUCED BY MULTIVALENT ANTIGENS

This study describes the effects of incubating antibody-forming cells (AFC), either as mass cell suspensions, or as single AFC in microdroplets, with antigens against which the cells display specificity. Most of the work was done with hapten-specific anti-DNP-AFC, but AFC with specificity against fl...

Descripción completa

Detalles Bibliográficos
Autores principales: Schrader, John W., Nossal, G. J. V.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1974
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2139685/
https://www.ncbi.nlm.nih.gov/pubmed/4133616
_version_ 1782143854082785280
author Schrader, John W.
Nossal, G. J. V.
author_facet Schrader, John W.
Nossal, G. J. V.
author_sort Schrader, John W.
collection PubMed
description This study describes the effects of incubating antibody-forming cells (AFC), either as mass cell suspensions, or as single AFC in microdroplets, with antigens against which the cells display specificity. Most of the work was done with hapten-specific anti-DNP-AFC, but AFC with specificity against flagellar antigens or fowl gamma globulin (FGG) were also included. It was noted that 30-min incubation of AFC with highly multivalent forms of antigen caused a substantial partial suppression of the antibody-forming performance of the AFC as measured by a hemolytic plaque test. Thus, when cell suspensions containing anti-DNP plaque-forming cells (PFC), were incubated for 30 min at 37°C with 100 µg of DNP-polymerized flagellin (DNP-POL), the number of plaques appearing after washing of the cells and placing them in plaque-revealing erythrocyte monolayers was reduced to 50% or less compared with the number of plaques observed with control portions preincubated with medium alone. Preincubation with DNP-lysine, with oligovalent DNP-protein conjugates, or with irrelevant antigens produced no such inhibition. Studies where preinhibited PFC suspensions were mixed with control suspensions before assay showed that a nonspecific carryover of antigen into the assay system was not involved. The inhibitory effect could also be initiated by holding cells at 0°C with DNP-POL, but in that case, inhibition only became manifest after cells were incubated for 30 min at 37°C before being placed in plaque-revealing monolayers. This suggested that inhibition was initiated by adsorption of multivalent antigen onto PFC-surface Ig, but required some active process before secretion actually slowed down. The effect was dose- and time-dependent, antigen-specific, and generalized for all antigens studied. As well as yielding reduced plaque numbers, the preinhibited cells also gave smaller, more turbid plaques, suggesting a reduction in antibody-forming rate by each PFC rather than the elimination of PFC. Consistent with this suggestion was the observation that the degree of inhibition of plaque formation could be increased by decreasing the sensitivity of the assay so that only AFC secreting at high rates were detected. A micromanipulation study, where single PFC were subjected to inhibition, and were then tested for the rate at which they could cause hemolysis, showed a 68% inhibition of mean secretory rate. Micromanipulation studies were performed to test the amount of cell surface-associated Ig on control and preinhibited PFC. For this, single PFC were held with [(125)I]antiglobulin and quantitative radioautography was performed. No significant difference emerged, suggesting that retention of secreted Ig on cell-attached antigen was not the cause of inhibition. The results are discussed in the framework of tolerance models and blocking effects at the T-cell level by antigen-antibody complexes. The name effector cell blockade is suggested in the belief that the phenomenon may be a general one applying to both T and B cells.
format Text
id pubmed-2139685
institution National Center for Biotechnology Information
language English
publishDate 1974
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21396852008-04-17 EFFECTOR CELL BLOCKADE : A NEW MECHANISM OF IMMUNE HYPOREACTIVITY INDUCED BY MULTIVALENT ANTIGENS Schrader, John W. Nossal, G. J. V. J Exp Med Article This study describes the effects of incubating antibody-forming cells (AFC), either as mass cell suspensions, or as single AFC in microdroplets, with antigens against which the cells display specificity. Most of the work was done with hapten-specific anti-DNP-AFC, but AFC with specificity against flagellar antigens or fowl gamma globulin (FGG) were also included. It was noted that 30-min incubation of AFC with highly multivalent forms of antigen caused a substantial partial suppression of the antibody-forming performance of the AFC as measured by a hemolytic plaque test. Thus, when cell suspensions containing anti-DNP plaque-forming cells (PFC), were incubated for 30 min at 37°C with 100 µg of DNP-polymerized flagellin (DNP-POL), the number of plaques appearing after washing of the cells and placing them in plaque-revealing erythrocyte monolayers was reduced to 50% or less compared with the number of plaques observed with control portions preincubated with medium alone. Preincubation with DNP-lysine, with oligovalent DNP-protein conjugates, or with irrelevant antigens produced no such inhibition. Studies where preinhibited PFC suspensions were mixed with control suspensions before assay showed that a nonspecific carryover of antigen into the assay system was not involved. The inhibitory effect could also be initiated by holding cells at 0°C with DNP-POL, but in that case, inhibition only became manifest after cells were incubated for 30 min at 37°C before being placed in plaque-revealing monolayers. This suggested that inhibition was initiated by adsorption of multivalent antigen onto PFC-surface Ig, but required some active process before secretion actually slowed down. The effect was dose- and time-dependent, antigen-specific, and generalized for all antigens studied. As well as yielding reduced plaque numbers, the preinhibited cells also gave smaller, more turbid plaques, suggesting a reduction in antibody-forming rate by each PFC rather than the elimination of PFC. Consistent with this suggestion was the observation that the degree of inhibition of plaque formation could be increased by decreasing the sensitivity of the assay so that only AFC secreting at high rates were detected. A micromanipulation study, where single PFC were subjected to inhibition, and were then tested for the rate at which they could cause hemolysis, showed a 68% inhibition of mean secretory rate. Micromanipulation studies were performed to test the amount of cell surface-associated Ig on control and preinhibited PFC. For this, single PFC were held with [(125)I]antiglobulin and quantitative radioautography was performed. No significant difference emerged, suggesting that retention of secreted Ig on cell-attached antigen was not the cause of inhibition. The results are discussed in the framework of tolerance models and blocking effects at the T-cell level by antigen-antibody complexes. The name effector cell blockade is suggested in the belief that the phenomenon may be a general one applying to both T and B cells. The Rockefeller University Press 1974-06-01 /pmc/articles/PMC2139685/ /pubmed/4133616 Text en Copyright © 1974 by The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Schrader, John W.
Nossal, G. J. V.
EFFECTOR CELL BLOCKADE : A NEW MECHANISM OF IMMUNE HYPOREACTIVITY INDUCED BY MULTIVALENT ANTIGENS
title EFFECTOR CELL BLOCKADE : A NEW MECHANISM OF IMMUNE HYPOREACTIVITY INDUCED BY MULTIVALENT ANTIGENS
title_full EFFECTOR CELL BLOCKADE : A NEW MECHANISM OF IMMUNE HYPOREACTIVITY INDUCED BY MULTIVALENT ANTIGENS
title_fullStr EFFECTOR CELL BLOCKADE : A NEW MECHANISM OF IMMUNE HYPOREACTIVITY INDUCED BY MULTIVALENT ANTIGENS
title_full_unstemmed EFFECTOR CELL BLOCKADE : A NEW MECHANISM OF IMMUNE HYPOREACTIVITY INDUCED BY MULTIVALENT ANTIGENS
title_short EFFECTOR CELL BLOCKADE : A NEW MECHANISM OF IMMUNE HYPOREACTIVITY INDUCED BY MULTIVALENT ANTIGENS
title_sort effector cell blockade : a new mechanism of immune hyporeactivity induced by multivalent antigens
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2139685/
https://www.ncbi.nlm.nih.gov/pubmed/4133616
work_keys_str_mv AT schraderjohnw effectorcellblockadeanewmechanismofimmunehyporeactivityinducedbymultivalentantigens
AT nossalgjv effectorcellblockadeanewmechanismofimmunehyporeactivityinducedbymultivalentantigens