Cargando…

Androgen Ablation Leads to an Upregulation and Intranuclear Accumulation of Deoxyribonuclease I in Rat Prostate Epithelial Cells Paralleling Their Apoptotic Elimination

After androgen ablation by castration, the epithelial cells of the rat ventral prostate are eliminated by apoptosis. The number of cells showing apoptotic chromatin degradation increases with time up to day 3 after castration as verified by in situ end labeling of fragmented DNA. Apoptotic chromatin...

Descripción completa

Detalles Bibliográficos
Autores principales: Rauch, Frank, Polzar, Bernhard, Stephan, Harald, Zanotti, Silvia, Paddenberg, Renate, Mannherz, Hans Georg
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1997
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2139838/
https://www.ncbi.nlm.nih.gov/pubmed/9151693
_version_ 1782143889656774656
author Rauch, Frank
Polzar, Bernhard
Stephan, Harald
Zanotti, Silvia
Paddenberg, Renate
Mannherz, Hans Georg
author_facet Rauch, Frank
Polzar, Bernhard
Stephan, Harald
Zanotti, Silvia
Paddenberg, Renate
Mannherz, Hans Georg
author_sort Rauch, Frank
collection PubMed
description After androgen ablation by castration, the epithelial cells of the rat ventral prostate are eliminated by apoptosis. The number of cells showing apoptotic chromatin degradation increases with time up to day 3 after castration as verified by in situ end labeling of fragmented DNA. Apoptotic chromatin degradation is catalyzed by a Ca(2+), Mg(2+)-dependent endonuclease. Recently, evidence has been presented that suggests deoxyribonuclease I (DNase I) is identical or very closely related to the apoptotic endonuclease (Peitsch, M.C., B. Polzar, H. Stephan, T. Crompton, H.R. MacDonald, H.G. Mannherz, and J. Tschopp. 1993. EMBO [Eur. Mol. Biol. Organ.] J. 12:371–377). Therefore, the expression of DNase I in the ventral prostate of the rat was analyzed before and after androgen ablation at the level of protein, enzymatic activity, and gene transcripts using immunohistochemical and biochemical techniques. DNase I immunoreactivity was detected only in a few single epithelial cells before androgen ablation. After castration, a time-dependent increase in DNase I immunoreactivity was observed within the epithelial cells. It first appeared after about 12 h in the apical region of a large number of epithelial cells. Up to day 3 after castration, the intracellular DNase I antigenicity continuously increased, and the cell nuclei gradually became DNase I positive. At day 5, almost all nuclei of the epithelium were stained by anti–DNase I. DNase I immunoreactivity was particularly concentrated in cells showing morphological signs of apoptosis, like nuclear fragmentation, and in many cases was found to persist in apoptotic bodies. DNase I gene transcripts were detected in control animals using dot and Northern blotting as well as RNase protection assay. After androgen ablation, the amount of DNase I gene transcripts in total extractable RNA was found unchanged or only slightly decreased up to day 5. Their exclusive localization within the epithelial cells was verified by in situ hybridization. Before castration, the DNase I gene transcripts were homogeneously distributed in all epithelial cells. At day 3, DNase I–specific mRNA was found to be highly concentrated in cells of apoptotic morphology. Using the zymogram technique, a single endonucleolytic activity of about 32 kD was detected in tissue homogenates before castration. After androgen ablation, the endonucleolytic activity increased about four- to sevenfold up to day 3. At day 5, however, it had dropped to its original level. At day 1, three new endonucleolytic variants of higher molecular mass were expressed. At day 3, the predominant endonucleolytic activity exhibited an apparent molecular mass of 32 kD. Enzymatic analysis of the endonucleases present in prostate homogenates before and after castration demonstrated properties identical to DNase I. They were inhibited by chelators of divalent cations, Zn(2+) ions and monomeric actin. Immunodepletion was achieved by immobilized antibodies specific for rat parotid DNase I. A polyclonal antibody raised against denatured DNase I was shown by Western blotting to stain a 32-kD band after enrichment of the endonuclease from day 0 and 3 homogenates by preparative gel electrophoresis. The data thus indicate that androgen ablation leads to translational upregulation of an endonucleolytic activity with properties identical to DNase I in rat ventral prostate, followed by its intracellular retention and final nuclear translocation in those epithelial cells that are destined to apoptotic elimination.
format Text
id pubmed-2139838
institution National Center for Biotechnology Information
language English
publishDate 1997
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21398382008-05-01 Androgen Ablation Leads to an Upregulation and Intranuclear Accumulation of Deoxyribonuclease I in Rat Prostate Epithelial Cells Paralleling Their Apoptotic Elimination Rauch, Frank Polzar, Bernhard Stephan, Harald Zanotti, Silvia Paddenberg, Renate Mannherz, Hans Georg J Cell Biol Article After androgen ablation by castration, the epithelial cells of the rat ventral prostate are eliminated by apoptosis. The number of cells showing apoptotic chromatin degradation increases with time up to day 3 after castration as verified by in situ end labeling of fragmented DNA. Apoptotic chromatin degradation is catalyzed by a Ca(2+), Mg(2+)-dependent endonuclease. Recently, evidence has been presented that suggests deoxyribonuclease I (DNase I) is identical or very closely related to the apoptotic endonuclease (Peitsch, M.C., B. Polzar, H. Stephan, T. Crompton, H.R. MacDonald, H.G. Mannherz, and J. Tschopp. 1993. EMBO [Eur. Mol. Biol. Organ.] J. 12:371–377). Therefore, the expression of DNase I in the ventral prostate of the rat was analyzed before and after androgen ablation at the level of protein, enzymatic activity, and gene transcripts using immunohistochemical and biochemical techniques. DNase I immunoreactivity was detected only in a few single epithelial cells before androgen ablation. After castration, a time-dependent increase in DNase I immunoreactivity was observed within the epithelial cells. It first appeared after about 12 h in the apical region of a large number of epithelial cells. Up to day 3 after castration, the intracellular DNase I antigenicity continuously increased, and the cell nuclei gradually became DNase I positive. At day 5, almost all nuclei of the epithelium were stained by anti–DNase I. DNase I immunoreactivity was particularly concentrated in cells showing morphological signs of apoptosis, like nuclear fragmentation, and in many cases was found to persist in apoptotic bodies. DNase I gene transcripts were detected in control animals using dot and Northern blotting as well as RNase protection assay. After androgen ablation, the amount of DNase I gene transcripts in total extractable RNA was found unchanged or only slightly decreased up to day 5. Their exclusive localization within the epithelial cells was verified by in situ hybridization. Before castration, the DNase I gene transcripts were homogeneously distributed in all epithelial cells. At day 3, DNase I–specific mRNA was found to be highly concentrated in cells of apoptotic morphology. Using the zymogram technique, a single endonucleolytic activity of about 32 kD was detected in tissue homogenates before castration. After androgen ablation, the endonucleolytic activity increased about four- to sevenfold up to day 3. At day 5, however, it had dropped to its original level. At day 1, three new endonucleolytic variants of higher molecular mass were expressed. At day 3, the predominant endonucleolytic activity exhibited an apparent molecular mass of 32 kD. Enzymatic analysis of the endonucleases present in prostate homogenates before and after castration demonstrated properties identical to DNase I. They were inhibited by chelators of divalent cations, Zn(2+) ions and monomeric actin. Immunodepletion was achieved by immobilized antibodies specific for rat parotid DNase I. A polyclonal antibody raised against denatured DNase I was shown by Western blotting to stain a 32-kD band after enrichment of the endonuclease from day 0 and 3 homogenates by preparative gel electrophoresis. The data thus indicate that androgen ablation leads to translational upregulation of an endonucleolytic activity with properties identical to DNase I in rat ventral prostate, followed by its intracellular retention and final nuclear translocation in those epithelial cells that are destined to apoptotic elimination. The Rockefeller University Press 1997-05-19 /pmc/articles/PMC2139838/ /pubmed/9151693 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Rauch, Frank
Polzar, Bernhard
Stephan, Harald
Zanotti, Silvia
Paddenberg, Renate
Mannherz, Hans Georg
Androgen Ablation Leads to an Upregulation and Intranuclear Accumulation of Deoxyribonuclease I in Rat Prostate Epithelial Cells Paralleling Their Apoptotic Elimination
title Androgen Ablation Leads to an Upregulation and Intranuclear Accumulation of Deoxyribonuclease I in Rat Prostate Epithelial Cells Paralleling Their Apoptotic Elimination
title_full Androgen Ablation Leads to an Upregulation and Intranuclear Accumulation of Deoxyribonuclease I in Rat Prostate Epithelial Cells Paralleling Their Apoptotic Elimination
title_fullStr Androgen Ablation Leads to an Upregulation and Intranuclear Accumulation of Deoxyribonuclease I in Rat Prostate Epithelial Cells Paralleling Their Apoptotic Elimination
title_full_unstemmed Androgen Ablation Leads to an Upregulation and Intranuclear Accumulation of Deoxyribonuclease I in Rat Prostate Epithelial Cells Paralleling Their Apoptotic Elimination
title_short Androgen Ablation Leads to an Upregulation and Intranuclear Accumulation of Deoxyribonuclease I in Rat Prostate Epithelial Cells Paralleling Their Apoptotic Elimination
title_sort androgen ablation leads to an upregulation and intranuclear accumulation of deoxyribonuclease i in rat prostate epithelial cells paralleling their apoptotic elimination
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2139838/
https://www.ncbi.nlm.nih.gov/pubmed/9151693
work_keys_str_mv AT rauchfrank androgenablationleadstoanupregulationandintranuclearaccumulationofdeoxyribonucleaseiinratprostateepithelialcellsparallelingtheirapoptoticelimination
AT polzarbernhard androgenablationleadstoanupregulationandintranuclearaccumulationofdeoxyribonucleaseiinratprostateepithelialcellsparallelingtheirapoptoticelimination
AT stephanharald androgenablationleadstoanupregulationandintranuclearaccumulationofdeoxyribonucleaseiinratprostateepithelialcellsparallelingtheirapoptoticelimination
AT zanottisilvia androgenablationleadstoanupregulationandintranuclearaccumulationofdeoxyribonucleaseiinratprostateepithelialcellsparallelingtheirapoptoticelimination
AT paddenbergrenate androgenablationleadstoanupregulationandintranuclearaccumulationofdeoxyribonucleaseiinratprostateepithelialcellsparallelingtheirapoptoticelimination
AT mannherzhansgeorg androgenablationleadstoanupregulationandintranuclearaccumulationofdeoxyribonucleaseiinratprostateepithelialcellsparallelingtheirapoptoticelimination