Cargando…

The Isolated Comet Tail Pseudopodium of Listeria monocytogenes: A Tail of Two Actin Filament Populations, Long and Axial and Short and Random

Listeria monocytogenes is driven through infected host cytoplasm by a comet tail of actin filaments that serves to project the bacterium out of the cell surface, in pseudopodia, to invade neighboring cells. The characteristics of pseudopodia differ according to the infected cell type. In PtK2 cells,...

Descripción completa

Detalles Bibliográficos
Autores principales: Sechi, Antonio S., Wehland, Jürgen, Small, J. Victor
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1997
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2139863/
https://www.ncbi.nlm.nih.gov/pubmed/9105044
_version_ 1782143895467982848
author Sechi, Antonio S.
Wehland, Jürgen
Small, J. Victor
author_facet Sechi, Antonio S.
Wehland, Jürgen
Small, J. Victor
author_sort Sechi, Antonio S.
collection PubMed
description Listeria monocytogenes is driven through infected host cytoplasm by a comet tail of actin filaments that serves to project the bacterium out of the cell surface, in pseudopodia, to invade neighboring cells. The characteristics of pseudopodia differ according to the infected cell type. In PtK2 cells, they reach a maximum length of ∼15 μm and can gyrate actively for several minutes before reentering the same or an adjacent cell. In contrast, the pseudopodia of the macrophage cell line DMBM5 can extend to >100 μm in length, with the bacteria at their tips moving at the same speed as when at the head of comet tails in bulk cytoplasm. We have now isolated the pseudopodia from PtK2 cells and macrophages and determined the organization of actin filaments within them. It is shown that they possess a major component of long actin filaments that are more or less splayed out in the region proximal to the bacterium and form a bundle along the remainder of the tail. This axial component of filaments is traversed by variable numbers of short, randomly arranged filaments whose number decays along the length of the pseudopodium. The tapering of the tail is attributed to a grading in length of the long, axial filaments. The exit of a comet tail from bulk cytoplasm into a pseudopodium is associated with a reduction in total F-actin, as judged by phalloidin staining, the shedding of α-actinin, and the accumulation of ezrin. We propose that this transition reflects the loss of a major complement of short, random filaments from the comet, and that these filaments are mainly required to maintain the bundled form of the tail when its borders are not restrained by an enveloping pseudopodium membrane. A simple model is put forward to explain the origin of the axial and randomly oriented filaments in the comet tail.
format Text
id pubmed-2139863
institution National Center for Biotechnology Information
language English
publishDate 1997
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21398632008-05-01 The Isolated Comet Tail Pseudopodium of Listeria monocytogenes: A Tail of Two Actin Filament Populations, Long and Axial and Short and Random Sechi, Antonio S. Wehland, Jürgen Small, J. Victor J Cell Biol Article Listeria monocytogenes is driven through infected host cytoplasm by a comet tail of actin filaments that serves to project the bacterium out of the cell surface, in pseudopodia, to invade neighboring cells. The characteristics of pseudopodia differ according to the infected cell type. In PtK2 cells, they reach a maximum length of ∼15 μm and can gyrate actively for several minutes before reentering the same or an adjacent cell. In contrast, the pseudopodia of the macrophage cell line DMBM5 can extend to >100 μm in length, with the bacteria at their tips moving at the same speed as when at the head of comet tails in bulk cytoplasm. We have now isolated the pseudopodia from PtK2 cells and macrophages and determined the organization of actin filaments within them. It is shown that they possess a major component of long actin filaments that are more or less splayed out in the region proximal to the bacterium and form a bundle along the remainder of the tail. This axial component of filaments is traversed by variable numbers of short, randomly arranged filaments whose number decays along the length of the pseudopodium. The tapering of the tail is attributed to a grading in length of the long, axial filaments. The exit of a comet tail from bulk cytoplasm into a pseudopodium is associated with a reduction in total F-actin, as judged by phalloidin staining, the shedding of α-actinin, and the accumulation of ezrin. We propose that this transition reflects the loss of a major complement of short, random filaments from the comet, and that these filaments are mainly required to maintain the bundled form of the tail when its borders are not restrained by an enveloping pseudopodium membrane. A simple model is put forward to explain the origin of the axial and randomly oriented filaments in the comet tail. The Rockefeller University Press 1997-04-07 /pmc/articles/PMC2139863/ /pubmed/9105044 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Sechi, Antonio S.
Wehland, Jürgen
Small, J. Victor
The Isolated Comet Tail Pseudopodium of Listeria monocytogenes: A Tail of Two Actin Filament Populations, Long and Axial and Short and Random
title The Isolated Comet Tail Pseudopodium of Listeria monocytogenes: A Tail of Two Actin Filament Populations, Long and Axial and Short and Random
title_full The Isolated Comet Tail Pseudopodium of Listeria monocytogenes: A Tail of Two Actin Filament Populations, Long and Axial and Short and Random
title_fullStr The Isolated Comet Tail Pseudopodium of Listeria monocytogenes: A Tail of Two Actin Filament Populations, Long and Axial and Short and Random
title_full_unstemmed The Isolated Comet Tail Pseudopodium of Listeria monocytogenes: A Tail of Two Actin Filament Populations, Long and Axial and Short and Random
title_short The Isolated Comet Tail Pseudopodium of Listeria monocytogenes: A Tail of Two Actin Filament Populations, Long and Axial and Short and Random
title_sort isolated comet tail pseudopodium of listeria monocytogenes: a tail of two actin filament populations, long and axial and short and random
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2139863/
https://www.ncbi.nlm.nih.gov/pubmed/9105044
work_keys_str_mv AT sechiantonios theisolatedcomettailpseudopodiumoflisteriamonocytogenesatailoftwoactinfilamentpopulationslongandaxialandshortandrandom
AT wehlandjurgen theisolatedcomettailpseudopodiumoflisteriamonocytogenesatailoftwoactinfilamentpopulationslongandaxialandshortandrandom
AT smalljvictor theisolatedcomettailpseudopodiumoflisteriamonocytogenesatailoftwoactinfilamentpopulationslongandaxialandshortandrandom
AT sechiantonios isolatedcomettailpseudopodiumoflisteriamonocytogenesatailoftwoactinfilamentpopulationslongandaxialandshortandrandom
AT wehlandjurgen isolatedcomettailpseudopodiumoflisteriamonocytogenesatailoftwoactinfilamentpopulationslongandaxialandshortandrandom
AT smalljvictor isolatedcomettailpseudopodiumoflisteriamonocytogenesatailoftwoactinfilamentpopulationslongandaxialandshortandrandom