Cargando…

Specific Uptake of Tumor Necrosis Factor-α Is Involved in Growth Control of Trypanosoma brucei

Trypanosoma brucei is lysed by tumor necrosis factor-α (TNF-α) in a dose-dependent way, involving specific binding of the cytokine to a trypanosomal glycoprotein present in the flagellar pocket of the parasite. TNF-α–gold particles are endocytosed via coated pits and vesicles and are directed toward...

Descripción completa

Detalles Bibliográficos
Autores principales: Magez, Stefan, Geuskens, Maurice, Beschin, Alain, del Favero, Herwig, Verschueren, Hendrik, Lucas, Ralf, Pays, Etienne, de Baetselier, Patrick
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1997
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2139880/
https://www.ncbi.nlm.nih.gov/pubmed/9151676
Descripción
Sumario:Trypanosoma brucei is lysed by tumor necrosis factor-α (TNF-α) in a dose-dependent way, involving specific binding of the cytokine to a trypanosomal glycoprotein present in the flagellar pocket of the parasite. TNF-α–gold particles are endocytosed via coated pits and vesicles and are directed towards lysosome-like digestive organelles. The specific uptake of the cytokine by the parasite results in a developmentally regulated loss of osmoregulatory capacity. TNF-α specific lysis is prevented when lysis assays are performed at a temperature <26°C, despite uptake of the cytokine. Inhibition of lysis is also observed when a lysosomotropic agent is added during the first 2 h of incubation. Both monomorphic and pleomorphic trypanosomes are lysed but only when isolated during the peak of parasitaemia. Lysis is not observed with early infection stage parasites or procyclic (insect-specific) forms. Anti– TNF-α treatment of T. brucei-infected mice reveals a dramatic increase in parasitaemia in the blood circulation, the spleen, the lymph nodes, and the peritoneal cavity. These data suggest that in the mammalian host, TNF-α is involved in the growth control of T. brucei.