Cargando…

THE PHYSIOLOGICAL BASIS OF MORPHOLOGICAL POLARITY IN REGENERATION. II

1. The experiments show that the mass of air roots formed in a stem increases with the mass of the leaf attached to the stem, though it has not been possible to establish an exact mathematical relation between the two masses, owing to unavoidable sources of error. 2. Darkened leaves do not increase...

Descripción completa

Detalles Bibliográficos
Autor principal: Loeb, Jacques
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1919
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140335/
https://www.ncbi.nlm.nih.gov/pubmed/19871782
_version_ 1782143958393028608
author Loeb, Jacques
author_facet Loeb, Jacques
author_sort Loeb, Jacques
collection PubMed
description 1. The experiments show that the mass of air roots formed in a stem increases with the mass of the leaf attached to the stem, though it has not been possible to establish an exact mathematical relation between the two masses, owing to unavoidable sources of error. 2. Darkened leaves do not increase the mass of roots formed. 3. In stems suspended horizontally air roots appear on the lower side of the stem, with the exception of the cut end where they usually appear around the whole circumference of the stem. When the lower half of a stem suspended horizontally is cut off, roots are formed on the upper side. It is shown by experiments on leaves suspended horizontally that the more rapidly growing roots and shoots on the lower side inhibit the root and shoot formation in the upper half of such a leaf; and likewise the more rapid formation of roots on the lower side of a horizontally suspended stem seems to account for the inhibition of root formation on the upper side of such a stem. Likewise the more rapid growth of shoots on the upper side of a stem suspended horizontally is likely to inhibit the growth of shoots on the lower side. 4. Each leaf contains in its axil a preformed bud capable of giving rise to a root, which never grows out in the normal stem on account of the inhibitory influence of the normal roots at the base of the plant. These dormant root buds are situated above (apically from) the dormant shoot bud. The apical root buds can be caused to develop into air roots when a piece of stem is cut out from a plant from which the leaves except those in the basal node of the piece are removed. The larger these basal leaves the better the experiments succeed. 5. These apical air roots grow out in a few days, while the roots at the basal end of the stem (which in our experiments dip into water) grow out about a week later. As soon as the basal roots grow out in water they cause the air roots in the more apical region of the stem to dry out and to disappear. 6. In addition to the basal roots, basal nodes have also an inhibitory effect on the growth of the dormant root buds in the apical region of a stem. This is indicated by the fact that a stem with one pair of leaves near the base will form apical air roots more readily when no node is situated on the stem basally from the leaf than if there is a node basally from the leaf.
format Text
id pubmed-2140335
institution National Center for Biotechnology Information
language English
publishDate 1919
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21403352008-04-23 THE PHYSIOLOGICAL BASIS OF MORPHOLOGICAL POLARITY IN REGENERATION. II Loeb, Jacques J Gen Physiol Article 1. The experiments show that the mass of air roots formed in a stem increases with the mass of the leaf attached to the stem, though it has not been possible to establish an exact mathematical relation between the two masses, owing to unavoidable sources of error. 2. Darkened leaves do not increase the mass of roots formed. 3. In stems suspended horizontally air roots appear on the lower side of the stem, with the exception of the cut end where they usually appear around the whole circumference of the stem. When the lower half of a stem suspended horizontally is cut off, roots are formed on the upper side. It is shown by experiments on leaves suspended horizontally that the more rapidly growing roots and shoots on the lower side inhibit the root and shoot formation in the upper half of such a leaf; and likewise the more rapid formation of roots on the lower side of a horizontally suspended stem seems to account for the inhibition of root formation on the upper side of such a stem. Likewise the more rapid growth of shoots on the upper side of a stem suspended horizontally is likely to inhibit the growth of shoots on the lower side. 4. Each leaf contains in its axil a preformed bud capable of giving rise to a root, which never grows out in the normal stem on account of the inhibitory influence of the normal roots at the base of the plant. These dormant root buds are situated above (apically from) the dormant shoot bud. The apical root buds can be caused to develop into air roots when a piece of stem is cut out from a plant from which the leaves except those in the basal node of the piece are removed. The larger these basal leaves the better the experiments succeed. 5. These apical air roots grow out in a few days, while the roots at the basal end of the stem (which in our experiments dip into water) grow out about a week later. As soon as the basal roots grow out in water they cause the air roots in the more apical region of the stem to dry out and to disappear. 6. In addition to the basal roots, basal nodes have also an inhibitory effect on the growth of the dormant root buds in the apical region of a stem. This is indicated by the fact that a stem with one pair of leaves near the base will form apical air roots more readily when no node is situated on the stem basally from the leaf than if there is a node basally from the leaf. The Rockefeller University Press 1919-07-20 /pmc/articles/PMC2140335/ /pubmed/19871782 Text en Copyright © Copyright, 1919, by The Rockefeller Institute for Medical Research This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Loeb, Jacques
THE PHYSIOLOGICAL BASIS OF MORPHOLOGICAL POLARITY IN REGENERATION. II
title THE PHYSIOLOGICAL BASIS OF MORPHOLOGICAL POLARITY IN REGENERATION. II
title_full THE PHYSIOLOGICAL BASIS OF MORPHOLOGICAL POLARITY IN REGENERATION. II
title_fullStr THE PHYSIOLOGICAL BASIS OF MORPHOLOGICAL POLARITY IN REGENERATION. II
title_full_unstemmed THE PHYSIOLOGICAL BASIS OF MORPHOLOGICAL POLARITY IN REGENERATION. II
title_short THE PHYSIOLOGICAL BASIS OF MORPHOLOGICAL POLARITY IN REGENERATION. II
title_sort physiological basis of morphological polarity in regeneration. ii
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140335/
https://www.ncbi.nlm.nih.gov/pubmed/19871782
work_keys_str_mv AT loebjacques thephysiologicalbasisofmorphologicalpolarityinregenerationii
AT loebjacques physiologicalbasisofmorphologicalpolarityinregenerationii