Cargando…

THE SELECTIVE ABSORPTION OF POTASSIUM BY ANIMAL CELLS : II. THE CAUSE OF POTASSIUM SELECTION AS INDICATED BY THE ABSORPTION OF RUBIDIUM AND CESIUM.

1. Frog muscles perfused with Ringer solution in which potassium chloride has been replaced by an equivalent amount of rubidium or cesium chloride take up rubidium or cesium and incorporate them into the tissue substance in such form as to be retained during a subsequent perfusion with potassium-fre...

Descripción completa

Detalles Bibliográficos
Autores principales: Mitchell, Philip H., Wilson, J. Walter, Stanton, Ralph E.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1921
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140459/
https://www.ncbi.nlm.nih.gov/pubmed/19871920
Descripción
Sumario:1. Frog muscles perfused with Ringer solution in which potassium chloride has been replaced by an equivalent amount of rubidium or cesium chloride take up rubidium or cesium and incorporate them into the tissue substance in such form as to be retained during a subsequent perfusion with potassium-free Ringer solution, provided the muscles contract during the first perfusion. Retention of rubidium or cesium by a resting muscle does not occur. 2. Rats on synthetic diets, adequate in all respects except that potassium was replaced by an equivalent amount of rubidium or cesium, died after a period varying from 10 to 17 days with characteristic symptoms including tetanic spasms. Muscle, heart, liver, kidney, spleen, and lung tissues were then found to contain significant amounts of rubidium or cesium. The concentration of these metals in the muscle amounted, in some cases, as shown by a spectroscopic estimation, to about half the concentration of potassium normally found in mammallian muscle. 3. The results are regarded as tending to confirm the theory that the peculiarities in the physiological effects of potassium, including the facility with which it is "selected" by living cells in preference to sodium, are related to the electronic structure of the potassium ion as compared with that of similar ions. The possible relationship of the comparative migration velocity, a function of the electronic structure, to physiological effects is suggested.