Cargando…
THE NATURE OF FOVEAL DARK ADAPTATION
1. After a discussion of the sources of error involved in the study of dark adaptation, an apparatus and a procedure are described which avoid these errors. The method includes a control of the initial light adaptation, a record of the exact beginning of dark adaptation, and an accurate means of mea...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1921
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140462/ https://www.ncbi.nlm.nih.gov/pubmed/19871919 |
_version_ | 1782143987844382720 |
---|---|
author | Hecht, Selig |
author_facet | Hecht, Selig |
author_sort | Hecht, Selig |
collection | PubMed |
description | 1. After a discussion of the sources of error involved in the study of dark adaptation, an apparatus and a procedure are described which avoid these errors. The method includes a control of the initial light adaptation, a record of the exact beginning of dark adaptation, and an accurate means of measuring the threshold of the fovea after different intervals in the dark. 2. The results show that dark adaptation of the eye as measured by foveal vision proceeds at a very precipitous rate during the first few seconds, that most of the adaptation takes place during the first 30 seconds, and that the process practically ceases after 10 minutes. These findings explain much of the irregularity of the older data. 3. The changes which correspond to those in the fovea alone are secured by correcting the above results in terms of the movements of the pupil during dark adaptation. 4. On the assumption that the photochemical effect of the light is a linear function of the intensity, it is shown that the dark adaptation of the fovea itself follows the course of a bimolecular reaction. This is interpreted to mean that there are two photolytic products in the fovea; that they are disappearing because they are recombining to form anew the photosensitive substance of the fovea; and that the concentration of these products of photolysis in the sense cell must be increased by a definite fraction in order to produce a visual effect. 5. It is then suggested that the basis of the initial event in foveal light perception is some mechanism that involves a reversible photochemical reaction of which the "dark" reaction is bimolecular. Dark adaptation follows the "dark" reaction; sensory equilibrium is represented by the stationary state; and light adaptation by the shifting of the stationary state to a fresh point of equilibrium toward the "dark" side of the reaction. |
format | Text |
id | pubmed-2140462 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1921 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21404622008-04-23 THE NATURE OF FOVEAL DARK ADAPTATION Hecht, Selig J Gen Physiol Article 1. After a discussion of the sources of error involved in the study of dark adaptation, an apparatus and a procedure are described which avoid these errors. The method includes a control of the initial light adaptation, a record of the exact beginning of dark adaptation, and an accurate means of measuring the threshold of the fovea after different intervals in the dark. 2. The results show that dark adaptation of the eye as measured by foveal vision proceeds at a very precipitous rate during the first few seconds, that most of the adaptation takes place during the first 30 seconds, and that the process practically ceases after 10 minutes. These findings explain much of the irregularity of the older data. 3. The changes which correspond to those in the fovea alone are secured by correcting the above results in terms of the movements of the pupil during dark adaptation. 4. On the assumption that the photochemical effect of the light is a linear function of the intensity, it is shown that the dark adaptation of the fovea itself follows the course of a bimolecular reaction. This is interpreted to mean that there are two photolytic products in the fovea; that they are disappearing because they are recombining to form anew the photosensitive substance of the fovea; and that the concentration of these products of photolysis in the sense cell must be increased by a definite fraction in order to produce a visual effect. 5. It is then suggested that the basis of the initial event in foveal light perception is some mechanism that involves a reversible photochemical reaction of which the "dark" reaction is bimolecular. Dark adaptation follows the "dark" reaction; sensory equilibrium is represented by the stationary state; and light adaptation by the shifting of the stationary state to a fresh point of equilibrium toward the "dark" side of the reaction. The Rockefeller University Press 1921-11-20 /pmc/articles/PMC2140462/ /pubmed/19871919 Text en Copyright © Copyright, 1921, by The Rockefeller Institute for Medical Research This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Hecht, Selig THE NATURE OF FOVEAL DARK ADAPTATION |
title | THE NATURE OF FOVEAL DARK ADAPTATION |
title_full | THE NATURE OF FOVEAL DARK ADAPTATION |
title_fullStr | THE NATURE OF FOVEAL DARK ADAPTATION |
title_full_unstemmed | THE NATURE OF FOVEAL DARK ADAPTATION |
title_short | THE NATURE OF FOVEAL DARK ADAPTATION |
title_sort | nature of foveal dark adaptation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140462/ https://www.ncbi.nlm.nih.gov/pubmed/19871919 |
work_keys_str_mv | AT hechtselig thenatureoffovealdarkadaptation AT hechtselig natureoffovealdarkadaptation |