Cargando…

DONNAN EQUILIBRIUM AND THE PHYSICAL PROPERTIES OF PROTEINS : II. OSMOTIC PRESSURE.

1. It had been shown in previous publications that the osmotic pressure of a 1 per cent solution of a protein-acid salt varies in a characteristic way with the hydrogen ion concentration of the solution, the osmotic pressure having a minimum at the isoelectric point, rising steeply with a decrease i...

Descripción completa

Detalles Bibliográficos
Autor principal: Loeb, Jacques
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1921
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140488/
https://www.ncbi.nlm.nih.gov/pubmed/19871899
_version_ 1782143993769885696
author Loeb, Jacques
author_facet Loeb, Jacques
author_sort Loeb, Jacques
collection PubMed
description 1. It had been shown in previous publications that the osmotic pressure of a 1 per cent solution of a protein-acid salt varies in a characteristic way with the hydrogen ion concentration of the solution, the osmotic pressure having a minimum at the isoelectric point, rising steeply with a decrease in pH until a maximum is reached at pH of 3.4 or 3.5 (in the case of gelatin and crystalline egg albumin), this maximum being followed by a steep drop in the osmotic pressure with a further decrease in the pH of the gelatin or albumin solution. In this paper it is shown that (aside from two minor discrepancies) we can calculate this effect of the pH on the osmotic pressure of a protein-acid salt by assuming that the pH effect is due to that unequal distribution of crystalloidal ions (in particular free acid) on both sides of the membrane which Donnan's theory of membrane equilibrium demands. 2. It had been shown in preceding papers that only the valency but not the nature of the ion (aside from its valency) with which a protein is in combination has any effect upon the osmotic pressure of the solution of the protein; and that the osmotic pressure of a gelatin-acid salt with a monovalent anion (e.g. Cl, NO(3), acetate, H(2)PO(4), HC(2)O(4), etc.) is about twice or perhaps a trifle more than twice as high as the osmotic pressure of gelatin sulfate where the anion is bivalent; assuming that the pH and gelatin concentrations of all the solutions are the same. It is shown in this paper that we can calculate with a fair degree of accuracy this valency effect on the assumption that it is due to the influence of the valency of the anion of a gelatin-acid salt on that relative distribution of the free acid on both sides of the membrane which Donnan's theory of membrane equilibrium demands. 3. The curves of the observed values of the osmotic pressure show two constant minor deviations from the curves of the calculated osmotic pressure. One of these deviations consists in the fact that the values of the ascending branch of the calculated curves are lower than the corresponding values in the curves for the observed osmotic pressure, and the other deviation consists in the fact that the drop in the curves of calculated values occurs at a lower pH than the drop in the curves of the observed values.
format Text
id pubmed-2140488
institution National Center for Biotechnology Information
language English
publishDate 1921
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21404882008-04-23 DONNAN EQUILIBRIUM AND THE PHYSICAL PROPERTIES OF PROTEINS : II. OSMOTIC PRESSURE. Loeb, Jacques J Gen Physiol Article 1. It had been shown in previous publications that the osmotic pressure of a 1 per cent solution of a protein-acid salt varies in a characteristic way with the hydrogen ion concentration of the solution, the osmotic pressure having a minimum at the isoelectric point, rising steeply with a decrease in pH until a maximum is reached at pH of 3.4 or 3.5 (in the case of gelatin and crystalline egg albumin), this maximum being followed by a steep drop in the osmotic pressure with a further decrease in the pH of the gelatin or albumin solution. In this paper it is shown that (aside from two minor discrepancies) we can calculate this effect of the pH on the osmotic pressure of a protein-acid salt by assuming that the pH effect is due to that unequal distribution of crystalloidal ions (in particular free acid) on both sides of the membrane which Donnan's theory of membrane equilibrium demands. 2. It had been shown in preceding papers that only the valency but not the nature of the ion (aside from its valency) with which a protein is in combination has any effect upon the osmotic pressure of the solution of the protein; and that the osmotic pressure of a gelatin-acid salt with a monovalent anion (e.g. Cl, NO(3), acetate, H(2)PO(4), HC(2)O(4), etc.) is about twice or perhaps a trifle more than twice as high as the osmotic pressure of gelatin sulfate where the anion is bivalent; assuming that the pH and gelatin concentrations of all the solutions are the same. It is shown in this paper that we can calculate with a fair degree of accuracy this valency effect on the assumption that it is due to the influence of the valency of the anion of a gelatin-acid salt on that relative distribution of the free acid on both sides of the membrane which Donnan's theory of membrane equilibrium demands. 3. The curves of the observed values of the osmotic pressure show two constant minor deviations from the curves of the calculated osmotic pressure. One of these deviations consists in the fact that the values of the ascending branch of the calculated curves are lower than the corresponding values in the curves for the observed osmotic pressure, and the other deviation consists in the fact that the drop in the curves of calculated values occurs at a lower pH than the drop in the curves of the observed values. The Rockefeller University Press 1921-05-20 /pmc/articles/PMC2140488/ /pubmed/19871899 Text en Copyright © Copyright, 1921, by The Rockefeller Institute for Medical Research This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Loeb, Jacques
DONNAN EQUILIBRIUM AND THE PHYSICAL PROPERTIES OF PROTEINS : II. OSMOTIC PRESSURE.
title DONNAN EQUILIBRIUM AND THE PHYSICAL PROPERTIES OF PROTEINS : II. OSMOTIC PRESSURE.
title_full DONNAN EQUILIBRIUM AND THE PHYSICAL PROPERTIES OF PROTEINS : II. OSMOTIC PRESSURE.
title_fullStr DONNAN EQUILIBRIUM AND THE PHYSICAL PROPERTIES OF PROTEINS : II. OSMOTIC PRESSURE.
title_full_unstemmed DONNAN EQUILIBRIUM AND THE PHYSICAL PROPERTIES OF PROTEINS : II. OSMOTIC PRESSURE.
title_short DONNAN EQUILIBRIUM AND THE PHYSICAL PROPERTIES OF PROTEINS : II. OSMOTIC PRESSURE.
title_sort donnan equilibrium and the physical properties of proteins : ii. osmotic pressure.
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140488/
https://www.ncbi.nlm.nih.gov/pubmed/19871899
work_keys_str_mv AT loebjacques donnanequilibriumandthephysicalpropertiesofproteinsiiosmoticpressure