Cargando…

SENSORY ADAPTATION AND THE STATIONARY STATE

1. Experiments are described which measure the sensitivity of animals exposed to continued illumination to which they have become adapted. It is shown that the amount of outside light energy necessary to stimulate an adapted animal increases with the intensity of the adapting illumination. 2. The da...

Descripción completa

Detalles Bibliográficos
Autor principal: Hecht, Selig
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1923
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140584/
https://www.ncbi.nlm.nih.gov/pubmed/19872019
_version_ 1782144015976628224
author Hecht, Selig
author_facet Hecht, Selig
author_sort Hecht, Selig
collection PubMed
description 1. Experiments are described which measure the sensitivity of animals exposed to continued illumination to which they have become adapted. It is shown that the amount of outside light energy necessary to stimulate an adapted animal increases with the intensity of the adapting illumination. 2. The data are analyzed quantitatively in terms of the reversible reaction S ⇌ P + A shown previously to account for the photic sensitivity of these animals. This analysis demonstrates that, though the amount of incident energy necessary for a minimal response varies with the adapting intensity, the actual amount of photochemical decomposition required to set off the sensory mechanism is a constant quantity. 3. The ability of these animals to come into sensory equilibrium with any sustained illumination is accounted for quantitatively by the presence of a stationary state in the reversible photochemical reaction S ⇌ P + A during which the concentrations of the three components are constant. 4. It is shown that the concentrations of these substances at the stationary state are automatically controlled by the outside intensity. Therefore, given the sensory mechanism as a basis, the adaptation of the animals to light and the consequent changes in sensitivity, are determined entirely by the light to which the animals are exposed. 5. Because of the properties of the stationary state, and of the constancy of photochemical decomposition for a minimal effect, it is suggested that the sensory system is not only the traditional receptor system, but is also a protecting layer which stabilizes and buffers the relation between the nervous system and the environment.
format Text
id pubmed-2140584
institution National Center for Biotechnology Information
language English
publishDate 1923
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21405842008-04-23 SENSORY ADAPTATION AND THE STATIONARY STATE Hecht, Selig J Gen Physiol Article 1. Experiments are described which measure the sensitivity of animals exposed to continued illumination to which they have become adapted. It is shown that the amount of outside light energy necessary to stimulate an adapted animal increases with the intensity of the adapting illumination. 2. The data are analyzed quantitatively in terms of the reversible reaction S ⇌ P + A shown previously to account for the photic sensitivity of these animals. This analysis demonstrates that, though the amount of incident energy necessary for a minimal response varies with the adapting intensity, the actual amount of photochemical decomposition required to set off the sensory mechanism is a constant quantity. 3. The ability of these animals to come into sensory equilibrium with any sustained illumination is accounted for quantitatively by the presence of a stationary state in the reversible photochemical reaction S ⇌ P + A during which the concentrations of the three components are constant. 4. It is shown that the concentrations of these substances at the stationary state are automatically controlled by the outside intensity. Therefore, given the sensory mechanism as a basis, the adaptation of the animals to light and the consequent changes in sensitivity, are determined entirely by the light to which the animals are exposed. 5. Because of the properties of the stationary state, and of the constancy of photochemical decomposition for a minimal effect, it is suggested that the sensory system is not only the traditional receptor system, but is also a protecting layer which stabilizes and buffers the relation between the nervous system and the environment. The Rockefeller University Press 1923-05-20 /pmc/articles/PMC2140584/ /pubmed/19872019 Text en Copyright © Copyright, 1923, by The Rockefeller Institute for Medical Research This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Hecht, Selig
SENSORY ADAPTATION AND THE STATIONARY STATE
title SENSORY ADAPTATION AND THE STATIONARY STATE
title_full SENSORY ADAPTATION AND THE STATIONARY STATE
title_fullStr SENSORY ADAPTATION AND THE STATIONARY STATE
title_full_unstemmed SENSORY ADAPTATION AND THE STATIONARY STATE
title_short SENSORY ADAPTATION AND THE STATIONARY STATE
title_sort sensory adaptation and the stationary state
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140584/
https://www.ncbi.nlm.nih.gov/pubmed/19872019
work_keys_str_mv AT hechtselig sensoryadaptationandthestationarystate