Cargando…
THE NERVOUS MECHANISM OF COORDINATION IN THE CRINOID, ANTEDON ROSACEUS
1. Stimulation causes Antedon to swim by means of alternate oral bending and dorsal stroke of the arms. Two arms of a given ray move alternately so that while one is executing the aboral stroke its mate is flexing ventrally. This implies reciprocal inhibition. 2. Recriprocal inhibition between the t...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1924
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140635/ https://www.ncbi.nlm.nih.gov/pubmed/19872069 |
Sumario: | 1. Stimulation causes Antedon to swim by means of alternate oral bending and dorsal stroke of the arms. Two arms of a given ray move alternately so that while one is executing the aboral stroke its mate is flexing ventrally. This implies reciprocal inhibition. 2. Recriprocal inhibition between the two arms of an isolated ray can be abolished by the use of either strychnine or nicotine. 3. Coordination between the rays is referable to the conducting properties of the nervous pentagon which connects the five rays. In this system an impulse loses in effectiveness as it passes from the point of origin. 4. When Antedon is made to rest oral face down on the floor of an aquarium, oral flexion of all the rays, swimming movements, and righting result. Antedon is therefore negatively stereotropic with reference to its ventral side. 5. Excitation of the dorsal cirri results in aboral bending of all the rays. Stimulation of the cirri inhibits ventral flexion to the extent of preventing righting movements while on the other hand stimulation of the ventral surface inhibits the grasp reflex of the cirri. Thus oral and aboral sides of Antedon exhibit dynamic symmetry although structurally dissimilar. |
---|