Cargando…

CONTRIBUTION TO THE THEORY OF PERMEABILITY OF MEMBRANES FOR ELECTROLYTES

From experiments on such membranes as apple skin, parchment paper membrane, and a membrane of completely dry collodion, results have been obtained which could be interpreted by the assumption that these membranes are less permeable for anions than for cations. In parchment paper there is only a rela...

Descripción completa

Detalles Bibliográficos
Autor principal: Michaelis, L.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1925
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140746/
https://www.ncbi.nlm.nih.gov/pubmed/19872189
Descripción
Sumario:From experiments on such membranes as apple skin, parchment paper membrane, and a membrane of completely dry collodion, results have been obtained which could be interpreted by the assumption that these membranes are less permeable for anions than for cations. In parchment paper there is only a relative diminution of the mobility of the anions, in the apple skin and in the dry collodion membrane there is practically no permeability for anions at all. The theory is developed which explains how the decrease or complete lack of mobility of anions influences the electromotive effects of the membrane and the diffusibility of electrolytes across a membrane. The results of the theory are compared with the experimental results. In membranes impermeable for anions the permeability for cations gives the same order of cations as for the mobilities in a free aqueous solution. But the differences of the mobilities are enormously magnified, e.g. the mobilities of H(•) and Li(•), which are in the proportion of about 1:10 in aqueous solution, are in proportion of about 1:900 in the collodion membrane. The general cause for the retardation of ionic mobility within the membrane may be supposed to be the increased friction of the water envelope dragged along by the ion in the capillary canals of the membrane. The difference of the effect on the cations and on the anions may be attributed to the electric charge of the walls of the canals.