Cargando…
STUDIES ON THE AMOUNT OF LIGHT EMITTED BY MIXTURES OF CYPRIDINA LUCIFERIN AND LUCIFERASE
1. A photometric method was devised for measuring the intensities of light emitted per cc. of hiciferin solution and calculating the amount of light emitted per gm. of dried Cypridina powder. A total of 128 runs was made and the data are incorporated in this report. 2. The maximum amount of light em...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1927
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140861/ https://www.ncbi.nlm.nih.gov/pubmed/19872366 |
Sumario: | 1. A photometric method was devised for measuring the intensities of light emitted per cc. of hiciferin solution and calculating the amount of light emitted per gm. of dried Cypridina powder. A total of 128 runs was made and the data are incorporated in this report. 2. The maximum amount of light emitted from 1 gm. of powder under the experimental conditions was 0.655 lumens. Different samples of powder vary greatly in amount of light production. 3. When the concentration of substrate is doubled, nearly twice as much light is emitted, or an average ratio 2C/C of 1.86. Calculations of total light emissions per gm. of powder at different concentrations indicate that slightly more light is produced from the smaller concentrations. The maximum amount of light was produced by the solutions made with neutral sea water and averaged 0.445 lumens. The least light was obtained from solutions in distilled water saturated with hydrogen. The technique allows too rapid spontaneous oxidation prior to the saturation with hydrogen. The maximum amount of light from such experiments was only 0.077 lumens. Acid sea water solutions subsequently neutralized gave an average maximum of 0.386 lumens per gm. of powder per second. 4. When the concentration of enzyme is doubled, approximately the same amount of light is produced by both concentrations, although the stronger concentrations are slightly less effective than weaker ones. This undoubtedly is due to the colloidal nature of the enzyme and is a function of surface rather than of mass. In dilute solutions greater dispersion probably allows for greater adsorption to the surface of the enzyme. The average maximum amount of light produced in the series of enzyme experiments is of the magnitude 0.56 lumens per gm. of powder. |
---|