Cargando…
HYDRATION OF GELATIN IN SOLUTION
1. It was shown that the high viscosity of gelatin solutions as well as the character of the osmotic pressure-concentration curves indicates that gelatin is hydrated even at temperatures as high as 50°C. 2. The degree of hydration of gelatin was determined by means of viscosity measurements through...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1927
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140928/ https://www.ncbi.nlm.nih.gov/pubmed/19872362 |
_version_ | 1782144096400310272 |
---|---|
author | Kunitz, M. |
author_facet | Kunitz, M. |
author_sort | Kunitz, M. |
collection | PubMed |
description | 1. It was shown that the high viscosity of gelatin solutions as well as the character of the osmotic pressure-concentration curves indicates that gelatin is hydrated even at temperatures as high as 50°C. 2. The degree of hydration of gelatin was determined by means of viscosity measurements through the application of the formula See PDF for Equation. 3. When the concentration of gelatin was corrected for the volume of water of hydration as obtained from the viscosity measurements, the relation between the osmotic pressure of various concentrations of gelatin and the corrected concentrations became linear, thus making it possible to determine the apparent molecular weight of gelatin through the application of van't Hoff's law. The molecular weight of gelatin at 35°C. proved to be 61,500. 4. A study was made of the mechanism of hydration of gelatin and it was shown that the experimental data agree with the theory that the hydration of gelatin is a pure osmotic pressure phenomenon brought about by the presence in gelatin of a number of insoluble micellæ containing a definite amount of a soluble ingredient of gelatin. As long as there is a difference in the osmotic pressure between the inside of the micellæ and the outside gelatin solution the micellæ swell until an equilibrium is established at which the osmotic pressure inside of the micellæ is balanced by the total osmotic pressure of the gelatin solution and by the elasticity pressure of the micellæ. 5. On addition of HCl to isoelectric gelatin the total activity of ions inside of the micellæ is greater than in the outside solution due to a greater concentration of protein in the micellæ. This brings about a further swelling of the micellæ until a Donnan equilibrium is established in the ion distribution accompanied by an equilibrium in the osmotic pressure. Through the application of the theory developed here it was possible actually to calculate the osmotic pressure difference between the inside of the micellæ and the outside solution which was brought about by the difference in the ion distribution. 6. According to the same theory the effect of pH on viscosity of gelatin should diminish with increase in concentration of gelatin, since the difference in the concentration of the protein inside and outside of the micellæ also decreases. This was confirmed experimentally. At concentrations above 8 gm. per 100 gm. of H(2)O there is very little difference in the viscosity of gelatin of various pH as compared with that of isoelectric gelatin. |
format | Text |
id | pubmed-2140928 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1927 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21409282008-04-23 HYDRATION OF GELATIN IN SOLUTION Kunitz, M. J Gen Physiol Article 1. It was shown that the high viscosity of gelatin solutions as well as the character of the osmotic pressure-concentration curves indicates that gelatin is hydrated even at temperatures as high as 50°C. 2. The degree of hydration of gelatin was determined by means of viscosity measurements through the application of the formula See PDF for Equation. 3. When the concentration of gelatin was corrected for the volume of water of hydration as obtained from the viscosity measurements, the relation between the osmotic pressure of various concentrations of gelatin and the corrected concentrations became linear, thus making it possible to determine the apparent molecular weight of gelatin through the application of van't Hoff's law. The molecular weight of gelatin at 35°C. proved to be 61,500. 4. A study was made of the mechanism of hydration of gelatin and it was shown that the experimental data agree with the theory that the hydration of gelatin is a pure osmotic pressure phenomenon brought about by the presence in gelatin of a number of insoluble micellæ containing a definite amount of a soluble ingredient of gelatin. As long as there is a difference in the osmotic pressure between the inside of the micellæ and the outside gelatin solution the micellæ swell until an equilibrium is established at which the osmotic pressure inside of the micellæ is balanced by the total osmotic pressure of the gelatin solution and by the elasticity pressure of the micellæ. 5. On addition of HCl to isoelectric gelatin the total activity of ions inside of the micellæ is greater than in the outside solution due to a greater concentration of protein in the micellæ. This brings about a further swelling of the micellæ until a Donnan equilibrium is established in the ion distribution accompanied by an equilibrium in the osmotic pressure. Through the application of the theory developed here it was possible actually to calculate the osmotic pressure difference between the inside of the micellæ and the outside solution which was brought about by the difference in the ion distribution. 6. According to the same theory the effect of pH on viscosity of gelatin should diminish with increase in concentration of gelatin, since the difference in the concentration of the protein inside and outside of the micellæ also decreases. This was confirmed experimentally. At concentrations above 8 gm. per 100 gm. of H(2)O there is very little difference in the viscosity of gelatin of various pH as compared with that of isoelectric gelatin. The Rockefeller University Press 1927-05-20 /pmc/articles/PMC2140928/ /pubmed/19872362 Text en Copyright © Copyright, 1927, by The Rockefeller Institute for Medical Research This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Kunitz, M. HYDRATION OF GELATIN IN SOLUTION |
title | HYDRATION OF GELATIN IN SOLUTION |
title_full | HYDRATION OF GELATIN IN SOLUTION |
title_fullStr | HYDRATION OF GELATIN IN SOLUTION |
title_full_unstemmed | HYDRATION OF GELATIN IN SOLUTION |
title_short | HYDRATION OF GELATIN IN SOLUTION |
title_sort | hydration of gelatin in solution |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140928/ https://www.ncbi.nlm.nih.gov/pubmed/19872362 |
work_keys_str_mv | AT kunitzm hydrationofgelatininsolution |